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1 Introduction

The study of elliptic curves is of fundamental importance in the abstract world of arithmetic
geometry and Diophantine equations. We focus in particular on counting points on elliptic
curves over finite fields, an important topic in both the study of Diophantine equations and
elliptic curve cryptography. Many algorithms exist for the efficient computation of the orders
of elliptic curve groups and related quantities (see, for instance, [8], [9]).

1.1 Elliptic curves over finite fields.

Given a prime power q = pr > 3, consider the finite field Fq and a pair (A,B) where
A,B ∈ Fq such that 4A3 + 27B2 6= 0. We consider the set of solutions (x, y) to the cubic
equation y2 = x3+Ax+B over the finite field Fq. This set of ordered pairs, when augmented
by a “point at infinity” O, can be given a natural abelian group structure, where O serves as
the identity element (see [11] for the full details of this complicated group structure). Such
groups are called elliptic curves over Fq, and in fact elliptic curve groups can be defined
similarly over any field K. We typically write E(K) to denote an elliptic curve group E
defined over the field K, and in this paper, we focus exclusively on the case of curves defined
over finite fields. In particular, we wish to study the size of these groups.

Note that

(
x3 + Ax+B

Fq

)
+ 1 =


0 if x3 + Ax+B is not a square in Fq

1 if x3 + Ax+B ≡ 0

2 if x3 + Ax+B is a non-zero square in Fq,

, (1)

where
(

a
Fq

)
denotes the generalized Legendre symbol. It follows that

#E(Fq) = 1 +
∑
x∈Fq

((
x3 + Ax+B

Fq

)
+ 1

)
= q + 1 +

∑
x∈Fq

(
x3 + Ax+B

Fq

)
, (2)

where the +1 that precedes the sum above comes from the inclusion of the point at infinity

as the group identity. Typically, a(q) = −
∑

x∈Fq

(
x3+Ax+B

Fq

)
is called the trace of Frobenius

(see [11] for details).
The Hasse-Weil bound tells us

|a(q)| ≤ 2
√
q, (3)

and therefore the order of every elliptic curve over Fq lies in the interval

[q + 1− 2
√
q, q + 1 + 2

√
q]. (4)

One of the aims of this paper is to exactly determine the possible orders, or at worst, the
exact number of possible orders, that an elliptic curve can have over a given finite field.
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1.2 Characterization by j-invariant

The j-invariant of an elliptic curve E(K) : y2 = x3+Ax+B is an invariant of the isomorphism
class of E in an algebraic closure of K defined as

j = −1728
4A3

4A3 + 27B2
. (5)

Note that all curves of j-invariant 0 take the form y2 = x3 +B, and all curves of j-invariant
1728 are of the form y2 = x3 + Ax. We will find that this invariant is central to results
characterizing orders of elliptic curves. For instance, consider the following two theorems of
Gauss:

Theorem 1.1 (Gauss). Let p ≡ 1 (mod 3) be a prime, and let E(Fp) : y2 = x3 + B be an
elliptic curve. Then

#E(Fp) =


p+ 1 + 2a B is a sextic residue mod p

p+ 1− 2a B is a cubic residue mod p, but not a quadratic residue

p+ 1− a± 3b B is a quadratic residue mod p, but not a cubic residue

p+ 1 + a± 3b B is neither a quadratic nor cubic residue mod p

where p = a2 + 3b2, b > 0, and a ≡ 2 (mod 3). If p ≡ 2 (mod 3), then

#E(Fp) = p+ 1.

A proof of an equivalent statement of this result can be found in [6].

Theorem 1.2 (Gauss). Let p ≡ 1 (mod 4) be an odd prime, and let E(Fp) : y2 = x3 +Ax be
an elliptic curve. If a, b are integers such that p = a2 + b2, b is even, and a+ b ≡ 1 (mod 4),
then

#E(Fp) =


p+ 1− 2a if A is a biquadratic residue in Fp

p+ 1 + 2a if A is a quadratic residue, but not a biquadratic residue in Fp

p+ 1± 2b if A is not a quadratic residue in Fp

If p ≡ 2 (mod 3), then
#E(Fp) = p+ 1.

This is proven in [6] and [11]. Note that a is determined uniquely while b is determined
up to sign. Note that Theorem 1.1 allows one to exactly determine the order of an elliptic
curve of j-invariant equal to 0 over a prime field Fp in terms of p and the coefficients of the
curve, while Theorem 1.2 allows one to do the same for an elliptic curve of j-invariant equal
to 1728. In section 2, we extend Theorem 1.1 to elliptic curves defined over all finite fields
with j = 0, and in section 3, we similarly extend Theorem 1.2 to elliptic curves defined over
all finite fields with j = 1728. Finally, in section 4, we prove that all elliptic curves of given
j 6= 0, 1728 take on one of two possible orders over a fixed finite field. Moreover, the methods
we employ are all elementary ones, and do not require more than a basic understanding of
group and field theory.
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1.3 Preliminaries

Our goal in the next three sections is to extend results on elliptic curves over prime fields Fp

to arbitrary finite fields Fpr . We begin with a theorem of Weil that will allow us to determine
the order of an elliptic curves over a finite field Fqn given its order over Fq.

Theorem 1.3 (Weil). Suppose #E(Fq) = q + 1− a, where q need not be prime. Then, for
any n ≥ 1,

#E(Fqn) = qn + 1− (αn + βn),

where X2 − aX + q = (X − α)(X − β).

The proof mostly follows from algebraic manipulation and the definition of the trace of
Frobenius, and can be found in [11].

We say that an elliptic curve E(K) has a (quadratic) twist if there exists an elliptic curve
isomorphic to E over an algebraic closure K̄. In particular, two different curves are twists
of one another if and only if they have the same j-invariant (see [11], p.43). The following
lemma completely characterizes elliptic curves of a fixed j-invariant.

Lemma 1.4. Let K be a field whose characteristic is neither 2 nor 3, and let j 6= 0, 1728 be
an element of K. Then j0 is the j-invariant of an elliptic curve E(K) : y2 = x3 + Ax + B
if and only if (A,B) = (k2A0, k

3B0) for some k ∈ K×, where

(A0, B0) = (3j(1728− j0), 2j(1728− j0)2).

Proof. Suppose E(K) : y2 = x3 + Ax+ B satisfies (A,B) = (k2A0, k
3B0) for some k ∈ K×.

Then we have

j(E) = 1728
4A3

4A3 + 27B2

= 1728
4(k2 · 3j0(1728− j0))3

4(k2 · 3j0(1728− j0))3 + 27(k3 · 2j0(1728− j0)2)2

= 1728
4 · 27j30(1728− j0)3

4 · 27j30(1728− j0)3 + 4 · 27j20(1728− j0)4

= 1728
j0

j0 + 1728− j0
= j0.

Conversely, suppose that j0 6= 0, 1728 is the j-invariant of E(K) : y2 = x3 + Ax + B. We
have

1728 · 4A3

4A3 + 27B2
= j0

j0(4A
3 + 27B2) = 1728 · 4A3

27j0B
2 = 4(1728− j0)A3

B2

A3
=

4(1728− j0)
27j0

.
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Thus, we have
B2

0

A3
0

=
4j20(1728− j0)4

27j30(1728− j0)3
=

4(1728− j0)
27j0

=
B2

A3
.

This means that A3B2
0 = A3

0B
2. Note that since j 6= 0, 1728, none of A,B,A0, and B0 are

zero. Let k = A0B
AB0

. We have

(k2A0, k
3B0) =

(
A3

0B
2

A2B2
0

,
A3

0B
3

A3B2
0

)
=

(
A3B2

0

A2B2
0

,
A3

0B
3

A3
0B

2

)
= (A,B).

Twist techniques are often used in computing orders of elliptic curves (see [2]). We give
a standard combinatorial proof to the following result regarding the sum of the orders of
E(Fq) and its twist.

Lemma 1.5. Consider an elliptic curve E(Fq) : y2 = x3 +Ax+B and its twist Ẽ(Fq) : y2 =
x3 + g2Ax+ g3B where g is a generator of F×q . Then #E(Fq) + #Ẽ(Fq) = 2(q + 1).

Proof. Let QR(q) denote the set of all quadratic residues in Fq. Define the following sets

• S = {x ∈ Fq | x3 + Ax+B ∈ QR(q)};

• T = gS = {x ∈ Fq | (g−1x)3 + A(g−1x) +B ∈ QR(q)}; and

• U = {x ∈ Fq | x3 + g2Ax+ g3B ∈ QR(q)}.
We will show that T ∪ U = Fq. Suppose for sake of contradiction that there is x ∈ Fq

that is in neither T nor U . Then neither (g−1x)3 + A(g−1x) + B nor x3 + g2Ax + g3B is a
quadratic residue. Note that g3 is a quadratic non-residue and so the product

g3((g−1x)3 + A(g−1x) +B) = x3 + g2Ax+ g3B

is a quadratic residue, which is a contradiction. Thus, T ∪ U = Fq.
Next, we will show that T ∩ U is the set of roots of x3 + g2Ax + g3B = 0 in Fq. Let

x ∈ T ∩ U . Then (g−1x)3 +A(g−1x) +B and x3 + g2Ax+ g3B are both quadratic residues.
Since these differ by a factor of g3, x3 + g2Ax+ g3B = 0.

Now, let n be the number of roots of x3 + Ax + B over Fq. Note that n is also the
number of roots of x3 + g2Ax + g3B over Fq, because each root r of the first polynomial
corresponds to the root gr of the second polynomial. It is easy to see that the order of
#E(Fq) = 1 + 2 |S| − n and that |S| = |T |. Thus, #E(Fq) = 2 |T | − n + 1. Similarly,
#Ẽ(Fq) = 2 |U | − n+ 1. Thus,

#E(Fq) + #Ẽ(Fq) = 2(|T |+ |U |)− 2n+ 2.

Note that |T |+ |U | = q + n, since every element of Fq is in at least one set, and the n roots
of x3 + g2Ax+ g3B are in both sets. Thus,

#E(Fq) + #Ẽ(Fq) = 2(q + n)− 2n+ 2 = 2(q + 1).
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2 Determining the orders of E(Fpr) : y2 = x3 +B

Recall that the elliptic curves E(Fpr) : y2 = x3 + B are exactly the curves with j-invariant
j(E) = 0. We will show that for a fixed finite field Fpr , there are at most six possible orders
of curves E with j(E) = 0.

Proposition 2.1. Let a,B ∈ F×pr . Then E1(Fpr) : y2 = x3 +B and E2(Fpr) : y2 = x3 + a6B
have the same order.

Proof. Consider the transformation µ : E1 → E2 defined by

µ(x, y) = (a2x, a3y).

Since a 6= 0, µ is invertible. Note that

(a3y)2 = (a2x)3 + a6B ⇐⇒ a6y2 = a6x3 + a6B ⇐⇒ y2 = x3 +B.

So, µ(x, y) ∈ E2 if and only if (x, y) ∈ E1. That is, there is a bijection between the points of
E1 and E2.

Let H be the image of the map on Fq given by x 7→ x6. The proposition above shows
that the order of E : y2 = x3 + B depends only on which coset of H contains B. We
refer to these cosets as sextic residue classes. Similarly, we refer to the cosets of the cubes
(resp. squares) in F×q as cubic (resp. quadratic) residues. Hence, the collection of elliptic
curves E(Fq) with j(E) = 0 have at most six distinct orders. The following lemma gives the
relationship between the orders of the elliptic curves E(Fq) : y2 = x3 + B that are twists of
one another.

Lemma 2.2. Let g ∈ Fq be a generator of Fq and [gk], [gk+2] and [gk+4] be cosets of the
image of the sixth power map. Let Ei(Fq) : y2 = x3 +Bi be elliptic curves where B1, B2, and
B3 are taken from [gk], [gk+2] and [gk+4] respectively. Then,

#E1(Fq) + #E2(Fq) + #E3(Fq) = 3(q + 1).

Proof. Let CR(q) denote the set of all cubic residues in Fq. Define the following sets

S0 := {y ∈ Fq | y2 −B ∈ CR(q)}
T0 := g2S0 = {y ∈ Fq | (g−2y)2 −B ∈ CR(q)}
S1 := {y ∈ Fq | y2 − g2B ∈ CR(q)}
T1 := gS1 = {y ∈ Fq | (g−1y)2 − g2B ∈ CR(q)}
S2 := {y ∈ Fq | y2 − g4B ∈ CR(q)}
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We will show that T0 ∪ T1 ∪ S2 = Fq. Suppose to the contrary that there is y ∈ Fq such
that y /∈ T0∪T1∪S2. Then (g−2y)2−B, (g−1y)2− g2B, and y2− g4B are not cubic residues.
Note that g2 is a cubic non-residue and that

y2 − g4B = g4((g−2y)2 −B) = g2((g−1y)2 − g2B).

This means that y2 − g4B, (g−2y)2 − B, and (g−1y)2 − g2B are either all zero or they are
in distinct cubic residue classes. Since there are three cubic residue classes, one of which
contains the cubic residues, this is a contradiction. Thus, T0 ∪ T1 ∪ S2 = Fq.

Next, we will show that T0, T1, and S2 are pairwise disjoint, except for the elements y ∈ Fq

satisfying y2 − g4B = 0. Suppose that y ∈ T0 ∩ T1. Then (g−2y)2 − B and (g−1y)2 − g2B
are both quadratic residues. Since these differ by a factor of g2, this can only be the case if
(g−1y)2 − g2B = 0, i.e. y2 − g4B = 0.

The cases of y ∈ T0 ∩ S2 and y ∈ T1 ∩ S2 are analogous.
To conclude the proof, consider the elliptic curves E1(Fq) : y2 = x3 + B, E2(Fq) : y2 =

x3 + g3B, and E3(Fq) : y2 = x3 + g4B. Let n be the number of roots of y2−B over Fq. Note
that n is also the number of roots of y2 − g2B and y2 − g4B over Fq, because each root r of
the first polynomial corresponds to the roots gr and g2r of the second and third polynomial.

It is easy to see that the #E1(Fq) = 1 + 3 |S0| − 2n and |S0| = |T0|. Thus,

#E1(Fq) = 3 |T0| − 2n+ 1

Similarly, #E2(Fq) = 3 |T1| − 2n+ 1 and #E3(Fq) = 3 |S2| − 2n+ 1. Thus,

#E1(Fq) + #E2(Fq) + #E3(Fq) = 3(|T0|+ |T1|+ |S2|)− 6n+ 3.

Note that |T0| + |T1| + |S2| = q + 2n, since every element of Fq is in at least one of the
sets T0, T1, S2, and the roots of y2 + g4B are in all three sets. Thus,

#E1(Fq) + #E2(Fq) + #E3(Fq) = 3(q − 2n)− 6n+ 3 = 3q + 3 = 3(q + 1).

2.1 The order of E(Fq) : y2 = x3 +B for q ≡ 1 (mod 3)

In this section we correct the technique used in [7] that determines the order of E(Fq) : y2 =
x3 +B when q ≡ 1 (mod 3).

In [7], the authors construct a polynomial with the property that every possible trace
(up to a sign) of a curve E(Fq) : y2 = x3 +B appears as a root of this polynomial. However,
the authors use without justification the fact that every root of this polynomial is indeed a
possible trace of E(Fq). In this section, we present their argument with proper justification
for this step.

Let B be a generator of F×q , so B1, B2, . . . , B6 are in distinct sextic residue classes in Fq.
For i ∈ {1, 2, . . . , 6} define the following elliptic curves

Ei(Fq) : y2 = x3 +Bi.
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On Ei, denote the trace of Frobenius by ai(q) = q + 1 − #Ei(Fq). We know these curves
represent all possible orders of curves E(Fq) with j = 0 since curves of the form E(Fq) : y2 =
x3 +B have the same order if the corresponding B’s are in the same sextic residue class.

Note that B2, B4, and B6 are squares in Fq, so they are squares in Fq3 . If one of
{B,B3, B5} is a square in Fq3 , then the remaining elements in the set are also squares. Thus
B2, B4, and B6 are in the same sextic residue class in Fq3 , as are B1, B3, and B5. Using
Proposition 2.1, we see that

#E2(Fq3) = #E4(Fq3) = #E6(Fq3) (6)

#E1(Fq3) = #E3(Fq3) = #E5(Fq3) (7)

Applying Theorem 1.3 with n = 3, we have for i ∈ {1, . . . , 6},
α3 + β3 = (α + β)3 − 3αβ(α + β) = ai(q)

3 − 3qai(q).

Then using Eq. (7) we have

a1(q)
3 − 3qa1(q) = a3(q)

3 − 3qa3(q) = a5(q)
3 − 3qa5(q).

This means that a1(q), a3(q), and a5(q) are roots of the cubic equation

x3 − 3qx− a1(q)3 + 3qa1(q) = 0.

The analogous statement holds for a2(q), a4(q), and a6(q).

Lemma 2.3. The roots of the polynomial x3 − 3qx− a1(q)3 + 3qa1(q) are exactly the traces
a1(q), a3(q), and a5(q).

Proof. By Vieta’s relations, the sum of the roots of x3− 3qx− a1(q)3 + 3qa1(q) is zero. Note
also that from Lemma 2.2 we have a1(q) + a3(q) + a5(q) = 0. Thus, to show that a1(q), a3(q)
and a5(q) are distinct it is enough to show then that two of them are distinct. We will show
that the trace a3(q) is even and the trace a5(q) is odd.

The point (x, 0) is on the elliptic curve E3(Fq) : y2 = x3 + B3 if and only if x is a
root of the equation x3 + B3 = 0. It is clear that x3 + B3 = 0 has at least one root. In
fact, there must be an odd number of roots, since if we have two roots r1 and r2, then
(x3 + B3)/((x − r1)(x − r2)) is a linear term which gives a third root. Therefore there are
an odd number of points of the form (x, 0) on the elliptic curve E3(Fq) : y2 = x3 +B3.

Counting all the points on E3 (including (x, y) for y 6= 0 and the “point at infinity”), we
have that E3 has an even order. Since this paper deals with powers of primes p > 2, we have
that a3(q) is even.

The curve E5(Fq) : y2 = x3 + B5 has an odd number of total points, since x3 + B5 = 0
has no roots. To see this, assume that r is a root of x3 +B5 = 0. Then

B =
−B6

−B5
=

(
−B2

r

)3

However this contradicts the fact that B is not a cubic residue, and so E5(Fq) has an odd
order.

Thus a3(q) is even and a5(q) is odd, so they are distinct. This concludes the claim that
a1(q), a3(q), and a5(q) are exactly the roots of x3 − 3qx− a1(q)3 + 3qa1(q).
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2.2 The order of E(Fpr) : y2 = x3 +B for pr ≡ 2 (mod 3).

We proceed by considering the cases r is odd and r is even separately.

2.2.1 Order of E(Fpr) : y2 = x3 +B when r is odd.

Note that in this case every element of Fq is a cubic residue. The map x 7→ x3 is a homo-
morphism, and the kernel is the set of solutions to x3 − 1 = 0 which has either 1 or 3 roots.
The size of the kernel must divide the order |F×pr | = pr − 1, and so it must be trivial.

Theorem 2.4. Let E(Fpr) : y2 = x3 +B be an elliptic curve where p ≡ 2 (mod 3), and r is
odd. Then #E(Fpr) = pr + 1.

Proof. For each value of y there is a unique choice of x that satisfy the equation x3 = y2−B
since every element in Fpr is a cubic residue. Including the point at infinity yields a group
of order pr + 1.

2.2.2 The order of E(Fpr) : y2 = x3 +B when r is even.

We use Theorem 1.3 to compute the order of E(Fpr) with r even.

Theorem 2.5. Let E(Fpr) : y2 = x3 + B be an elliptic curve where p ≡ 2 (mod 3) and r is
even. Then

#E(Fpr) ∈ {pr ± 2pr/2 + 1, pr ± pr/2 + 1}.

Proof. Let B be a non-cubic, non-quadratic residue in Fpr and define Ei : y2 = x3 + Bi for
1 ≤ i ≤ 4. Also, let ai(p

r) be the trace of Ei over Fpr . As in the last section, it follows that
a1(p

r), a3(p
r), and a5(p

r) are roots of the polynomial

f(x) = x3 − 3prx− a(p3r)

where a(p2r) is the trace of E1 (equivalently E3 and E5) over Fp3r . We compute a(p2r)
explicitly by noting that if A ∈ Fp, then E ′ : y2 = x3 + A taken as an elliptic curve over Fp

has trace 0 by Theorem 2.4. Hence, the trace of Frobenius of E ′(Fp3r) is

b3r/2c∑
i=0

3r

3r − i

(
3r − i
i

)
(−p)i(a(p))3r−2i,

where a(p) = 0, so we may assume that a(p3r) = 2(−p)3r/2.
Now, a1(p

r), a3(p
r), and a5(p

r) are the roots of

f(x) = x3 − 3prx− 2p3r/2 = (x− 2pr/2)(x+ pr/2)2.

from which the result follows since a1(p
r) = −a4(pr), a2(pr) = −a5(pr), and a3(p

r) = −a6(pr).
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3 Determining the orders of E(Fpr) : y2 = x3 + Ax

Using the following proposition we see that the elliptic curves curves E1(Fq) : y2 = x3 + Ax
and E2(Fq) : y2 = x3 +A′x have the same order when A and A′ are in the same biquadratic
residue class. As in the last section, by biquadratic residue class, we mean cosets of the
subgroup of fourth powers in F×q . This implies that curves E : y2 = x3 + Ax have at most
four distinct orders.

Proposition 3.1. Let a ∈ F×q . Then the elliptic curves E1(Fq) : y2 = x3 + Ax and E2(Fq) :
y2 = x3 + a4Ax have the same order .

Proof. Let µ : E1 → E2 be as defined in Proposition 2.1. Then we have

(a3y)2 = (a2x)3 + a4A(a2x) ⇐⇒ a6y2 = a6x3 + a6Ax ⇐⇒ y2 = x3 + Ax.

This shows that µ is a bijection.

3.1 The order of E(Fpr) : y2 = x3 + Ax for p ≡ 1 (mod 4)

We extend the techniques of [7] to prove that in the case when p ≡ 1 (mod 4) the elliptic
curve E(Fpr) : y2 = x3 + Ax has four possible orders.

Proposition 3.2. Suppose A is a non-quadratic residue in F×pr and define the following
curves.

E1 : y2 = x3 + Ax

E2 : y2 = x3 + A2x

E3 : y2 = x3 + A3x

E4 : y2 = x3 + A4x

Let ai(p
r) be the trace of Ei(F×pr). Then each ai(p

r) is a root to the quartic polynomial.

f(x) = x4 − 4prx2 + 2p2r − a1(p4r)

Note that a1(p
4r) may be replaced by aj(p

4r) for j = 2, 3, 4.

Proof. By Lemma 1.5, a1(p
r) = −a3(pr) and a2(p

r) = −a4(pr). As a general fact, every
element of Fpr is a biquadratic residue in Fp4r . Hence, A,A2, A3, and A4 are in the same
biquadratic residue class of Fp4r . Thus,

#E1(Fp4r) = #E2(Fp4r) = #E3(Fp4r) = #E4(Fp4r).

By Weil’s theorem, knowing the trace aj(p
r) = pr + 1 − #Ej(Fpr), the trace aj(p

4r) of
Ej(Fp4r) is given by

aj(p
4r) =

2r∑
i=0

4r

4r − i

(
4r − i
i

)
(−p)iaj(pr)4r−2i.
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Applying this to each j = 1, . . . , 4, we obtain the following:

#Ei(Fp4r) = p4r + 1− (a1(p
r)4 − 4pra1(p

r)2 + 2p2r)

= p4r + 1− (a2(p
r)4 − 4pra2(p

r)2 + 2p2r)

= p4r + 1− (a3(p
r)4 − 4pra3(p

r)2 + 2p2r)

= p4r + 1− (a4(p
r)4 − 4pra4(p

r)2 + 2p2r)

Thus, each ai(p
r) is a root to the quartic polynomial

f(x) = x4 − 4prx2 + 2p2r − a1(p4r).

As ai(p
4r) = aj(p

4r) for 1 ≤ i, j ≤ 4, we may denote a1(p
4r) simply by a(p4r). We will

use the following fact when further analyzing a1(p
r), . . . , a4(p

r).

Proposition 3.3. If p > 3 is prime, then (-1) is non-quadratic residue in Fpr if and only if
pr ≡ 3 (mod 4).

Proof. Suppose pr ≡ 3 (mod 4). Choose a generator g of F×pr , and let n be an integer such
that pr − 1 = 4n + 2. Then 1 = g4n+2 implies that −1 = g2n+1 which is shows that (-1) is
non-quadratic residue in Fpr . Now, suppose pr ≡ 1 (mod 4), and let g be a generator of F×pr .
Note that since pr − 1 = 4n for some n, we have that 1 = g4n, and −1 = g2n = (gn)2. But
this contradicts the fact that (-1) is non-quadratic residue in Fpr .

The following proposition shows that {a1(pr), a3(pr)} ∩ {a2(pr), a4(pr)} = ∅.

Proposition 3.4. Let p > 3 be a prime with pr ≡ 1 (mod 4) and E(Fpr) : y2 = x3 + Ax be
an elliptic curve. If A is a quadratic residue in Fpr , then #E(Fpr) ≡ 0 (mod 4), and if A is
a non-quadratic residue, then #E(Fpr) ≡ 2 (mod 4).

Proof. By Proposition 3.3, it follows that −1 = d2 for some d ∈ F×pr . Suppose A = c2, for
some c > 0. Then

x3 + Ax = x(x2 + A) = x(x2 − c2d2) = x(x+ cd)(x− cd).

This equation has three roots: x = 0, cd,−cd. Note that if (x,±y) is a point on the curve E
and y 6= 0, then (−x,±dy) is also a point on the curve E. Thus, adding the point at infinity
and the points (0, 0), (cd, 0), and (−cd, 0), we find that #E(Fpr) ≡ 0 (mod 4).

If A is non-quadratic residue in Fpr , then the polynomial x2 + A has no roots in which
case #E(Fpr) ≡ 2 (mod 4).

Lemma 3.5. Let ai(p
r) be the trace of Ei(F×pr) for 1 ≤ i ≤ 4. Then the roots of the

polynomial
f(x) = x4 − 4prx2 + 2p2r − a(p4r)

are exactly the traces a1(p
r), . . . , a4(p

r).



Page 12 RHIT Undergrad. Math. J., Vol. 19, No. 1

Proof. As demonstrated above, f(ai(p
r)) = 0 for each 1 ≤ i ≤ 4. Since the f(x) has

no terms of odd order, x̄ is a root if and only if −x̄ is a root. Since a1(p
r) = −a3(pr)

and a2(p
r) = −a4(pr), it suffices to show that a1(p

r) 6= a2(p
r) which follows directly from

Proposition 3.4.

3.2 The order of E(Fpr) : y2 = x3 + Ax for p ≡ 3 (mod 4)

The point counting arguments for curves E : y2 = x3 + Ax rely on facts about quadratic
residues in Fpr . Hence, the case of E(Fpr) : y2 = x3 + Ax where r is even will be treated
separately from the case where r is odd.

3.2.1 The order of E(Fpr) : y2 = x3 + Ax for r odd

First we will show that #E(Fpr) = pr + 1 when p ≡ 3 (mod 4). To prove this, we need the
following fact about quadratic residues.

Theorem 3.6. Let p > 3 be prime and p ≡ 3 (mod 4). Then the order of the elliptic curve
E(Fpr) : y2 = x3 + Ax is pr + 1.

Proof. Consider E(Fpr) : y2 = x(x2 + A) when x 6= 0. Note that x2 + A = (−x)2 + A, and
that x is a square if and only if −x is not a square by Proposition 3.3.

Thus for every non-zero value of x for which x(x2 + A) is a square, we have that
(−x)((−x)2 + A) is not a square, and vice-versa. Thus there are (pr − 1)/2 values of x
for which x(x2 + A) is a square.

Furthermore, for each such value of x, there are two y values such that (x, y) ∈ E.
Finally, if x = 0, then y = 0, and we include also the point at infinity. Adding up all the

points on the curve yields (pr − 1) + 1 + 1 = pr + 1.

3.2.2 The order of E(Fpr) : y2 = x3 + Ax for r even

We will use Theorem 1.2 for orders of E(Fp) to compute the possible orders of E(Fpr) when
p ≡ 3 (mod 4) and r is even.

Theorem 3.7. Let E(Fpr) : y2 = x3 + Ax be an elliptic curve where p ≡ 3 (mod 4) and r
is even. Then

#E(Fpr) ∈ {pr + 1, pr ± 2pr/2 + 1}.

Proof. For 1 ≤ i ≤ 4, define Ei(Fpr) : y2 = x3 + Aix, and let ai(p
r) be the trace of

Ei for some quadratic non-residue in Fpr . Using the same arguments as in Section 2.1,
a1(p

r), a2(p
r), a3(p

r) and a4(p
r) are the roots of the polynomial

f(x) = x4 − 4prx2 + 2pr/2 − a4(p4r).

Without loss of generality we can assume that A4 ∈ Fp. By Theorem 3.6 we have that
#E(Fp) = p+ 1, i.e. a(p) = 0.
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By Weil’s theorem and the fact that a(p) = 0 we have

a4(p
4r) =

2r∑
i=0

4r

4r − i

(
4r − i
i

)
(−p)ia(p)4r−2i.

Hence, a1(p
r), a2(p

r), a3(p
r), and a4(p

r) are the roots of the polynomial

f(x) = x4 − 4prx2 + 2pr/2a4(p
4r) = x4 − 4prx2

which proves the theorem.

4 Determining the orders of E(Fpr) : y2 = x3 + Ax +B

An elliptic curve with j 6= 0, 1728 can have one of exactly two possible orders over a finite
field Fpr . We demonstrate this here. To do so, we make use of the following lemma.

Lemma 4.1. For any quadratic residue k ∈ F×pr , the elliptic curve E1(Fpr) : y2 = x3+Ax+B
has the same order as the elliptic curve E2(Fpr) : y2 = x3 + k2Ax+ k3B.

Proof. Let m ∈ F×q satisfy m2 = k. Consider the mapping ψ : E1 → E2 defined by
ψ((x, y)) = (m2x,m3y). If (x, y) ∈ E1 then

(m3y)2 = m6y2 = m6(x3 + Ax+B) = (m2x)3 + k2(m2x) + k3B,

so ψ((x, y)) ∈ E2. Similarly, if (x, y) ∈ E2 then

(m−3y)2 = m−6y2 = m−6(x3 + k2Ax+ k3B) = (m−2x)3 + A(m−2x) +B,

so ψ−1((x, y)) (which is clearly well-defined, since m ∈ F×pr) is on E1. Thus, ψ defines a
bijection between the points on E1 and the points on E2, and thus E1 and E2 must have the
same order, as desired.

Theorem 4.2. Let p 6= 2, 3 be prime and r be a positive integer. For every j0 ∈ Fpr with
j0 6= 0, 1728, there exists a non-negative integer t such that all elliptic curves E(Fpr) with
j-invariant j0 satisfy #E(Fpr) = pr + 1± t.

Proof. It follows that there are at most two orders of elliptic curves over Fpr for a fixed
j0, corresponding to the two possible quadratic residue classes of k over Fpr , where, from
Lemma 1.4, (A,B) = (k2 · 3j(123 − j), k3 · 2j(123 − j)2), since for two values of k from the
same residue class, the two corresponding elliptic curves have the same order.

All we have left to prove is that these two orders can be expressed as pr +1± t for some t.
Define E1 : y2 = x3 +A0x+B0 with A0 and B0 as in Lemma 1.4. By this lemma, any curve
with j-invariant j0 can be expressed as (k2A0, k

3B0); let E2 be a curve where k is a generator
of Fpr (and thus a quadratic non-residue). By Lemma 1.5, #E1(Fpr) + #E2(Fr

p) = 2(pr + 1).
Therefore, these two orders can be expressed as pr + 1 ± t for some non-negative integer t,
and so we are done.
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