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Abstract

We establish the first tight bound on the lower tail probability of the half-space KPZ equation with
eumann boundary parameter A = −1/2 and narrow-wedge initial data. The lower bound demonstrates
crossover between two regimes of super-exponential decay with exponents 5

2 and 3; the upper
ound demonstrates a crossover between regimes with exponents 3

2 and 3. Given a crude leading-order
symptotic in the Stokes region for the Ablowitz–Segur solution to Painlevé II (Definition 1.8), we
mprove the upper bound to demonstrate the same crossover as the lower bound. We also establish
ovel bounds on the large deviations of the GOE point process.
c 2021 Elsevier B.V. All rights reserved.
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1. Introduction

The Kardar–Parisi–Zhang (KPZ) equation is formally given by

∂T H (T, X ) =
1
2
∂2

X H (T, X ) +
1
2

(∂X H (T, X ))2
+ ξ (T, X ) , (1.1)

here T ≥ 0, X ∈ R, and ξ is Gaussian space–time white noise with covariance
E [ξ (T, X )ξ (S, Y )] = δ(T −S)δ(X−Y ). A physically relevant notion of solution to this equation
is given by the Cole–Hopf solution to the KPZ equation with narrow-wedge initial data

H (T, X ) := log Z (T, X ), with Z (0, X ) = δ0(X ) , (1.2)
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where Z solves the (1 + 1)d stochastic heat equation (SHE) with multiplicative space–time
white noise

∂T Z (T, X ) =
1
2
∂2

X Z (T, X ) + Z (T, X )ξ (T, X ). (1.3)

The well-definedness of (1.2) is given by the work of [38] establishing almost-sure positivity
of Z for a wide class of initial data (including delta initial data).

The KPZ equation is a paradigmatic model in a class of models, known as the KPZ
universality class, whose long-time limit is the KPZ fixed point. While this universality class
is not strictly defined, all models in this class should share specific salient features. The KPZ
equation itself has been shown to govern the long-time limits under weak asymmetric scaling
of many other models in the universality class. The notes and surveys [19,20,26,42,43,46,50],
and [56] provide further reading on various aspects of the KPZ universality class.

Just as in the full-space case, the half-space KPZ equation with Neumann boundary
conditions plays a significant role within the half-space KPZ universality class. Mathematical
analysis of the half-space analogues of models believed to lie in the KPZ universality class
began with the work of [7,30], both of which consider variants of half-space TASEP. For a
recent result relating to half-space TASEP, see [5]. Progress has been especially fruitful in the
case of ASEP. [23] established convergence of the height function of half-space ASEP under
weakly asymmetric scaling to the half-space KPZ equation with Neumann boundary parameter
A ≥ 0. Following this result, [9] established an exact one-point distribution formula for half-
space ASEP with A = −1/2, and [40] was able to extend the work of [23] to show convergence
to the half-space KPZ equation for all real A. See, for instance, [8,10,32,34,36,54], and [11]
for additional results in the half-space KPZ universality class.

We now describe the half-space KPZ equation in detail.

1.1. The half-space KPZ equation with Neumann boundary conditions

This paper seeks to establish bounds on the lower tail of the half-space KPZ equation with
Neumann boundary condition, an object which we presently define.

Definition 1.1 (Mild Solution to the Half-space SHE, Half-space KPZ). We say Z (T, X ) is a
mild solution to the SHE given in (1.3) on R+ with delta initial data at the origin and Robin

oundary condition with parameter A ∈ R

∂XZ (T, X )
⏐⏐⏐⏐

X=0
= AZ (T, 0) , ∀T > 0 , (1.4)

f Z (T, ·) is adapted to the filtration given by σ
(
Z (0, ·), W |[0,T ]

)
and the following Duhamel-

orm identity is satisfied

Z (T, X ) =

∫
∞

0
P R

T (X, Y )Z (0, Y ) dY (1.5)

+

∫ T

0

∫
∞

0
P R

T −S(X, Y )Z (S, Y )ξ (S, Y ) dWS(dY ) (1.6)

or all T > 0 and X > 0. Here, the last integral is Itô with respect to the cylindrical Wiener
process W , and P R is the heat kernel on [0, ∞), i.e., the fundamental solution to the heat
equation on [0, ∞), satisfying the Robin boundary condition

∂XP R
T (X, Y )

⏐⏐⏐⏐ = AP R
T (0, Y ) , ∀T > 0 , Y > 0 . (1.7)
X=0
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The Hopf–Cole solution to the half-space KPZ equation with Neumann boundary param-
ter A is then defined to be H = log Z .

[40, Proposition 4.2] establishes the existence, uniqueness, and almost-sure positivity of
Z (T, ·) for all A ∈ R, which makes the Hopf–Cole solution to the half-space KPZ equation
with Neumann boundary condition A ∈ R well-defined.

Our paper establishes tight bounds on the lower tail probability of H (T, 0), that is, the
probability that Z (T, 0) is very close to 0, or equivalently, that H (T, 0) is very negative, for
he critical boundary parameter A = −1/2. Our result builds on the method used by [21] to
nd analogous bounds for the full-space KPZ lower tail.

We now explain the choice of boundary parameter A = −1/2. For this particular boundary
arameter, [40, Theorem 1.1] established Tracy–Widom GOE fluctuations at the origin.

roposition 1.2 ([40, Theorem 1.3]). Let H (T, X ) be the solution to the half-space KPZ
quation with inhomogeneous Neumann boundary parameter A = −1/2 and narrow-wedge
nitial data (which corresponds to δ0 initial data for the SHE). Then the following weak
onvergence result holds

lim
T →∞

P(ΥT ≤ s) = FGOE(s) , where ΥT :=
H (2T, 0) +

T
12

T 1/3 . (1.8)

ere, FGOE(s) is the Tracy–Widom GOE fluctuations [51], and ΥT is the solution to the KPZ
quation after centering and re-scaling.

For other choices of A, establishing the limiting fluctuations of ΥT has been elusive,
nd thus establishing lower tail bounds in these regimes seems at the moment unfeasible.
40, Conjecture 1.2] gives a conjecture establishing exactly two more regimes of distinct
uctuations: A < −1/2, with Gaussian fluctuations, and A > −1/2, with Tracy–Widom

GSE distribution [51]. [40, Section 1.3] gives a heuristic argument for the Gaussianity of the
A < −1/2 regime; see also [41]. [13,28,34] provides strong evidence towards the conjectured
A > −1/2 regime, though we emphasize that no part of this conjecture has been rigorously
established.

On the other hand, for A = −1/2, we have access to Proposition 1.3, which provides the
starting point for our analysis.

Proposition 1.3 ([40]). Let H (T, X ) denote the solution to the half-space KPZ equation on
[0, ∞) with Neumann boundary parameter A = −1/2 and narrow-wedge initial data. Then
for u > 0,

ESHE

[
exp

(
−u exp

(
H (2T, 0) +

T
12

))]
= EGOE

⎡⎣ ∞∏
k=1

1√
1 + 4u exp

(
T 1/3ak

)
⎤⎦ . (1.9)

ere, the (a1 > a2 > . . . ) form the GOE point process (defined in Section 3.1).

Taking u :=
1
4 exp

(
T 1/3s

)
in (1.9) and recalling ΥT from (1.8), we obtain

ESHE

[
exp

(
−

1
4

exp
(
T 1/3(ΥT + s)

))]
= EGOE

⎡⎣ ∞∏
k=1

1√
1 + exp

(
T 1/3 (ak + s)

)
⎤⎦ .

(1.10)
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Note that the function exp (− exp(x)) is an approximate of the indicator function 1(x ≤ 0), and
so the integrand of the left-hand side of (1.10) approximates P(ΥT + s ≤ 0) for large s. This

euristic is made rigorous in Section 2.1. Proposition 1.3 was conjectured in [9, Theorem 7.6],
hich proves the analogous formula for the height function of half-space ASEP and computes

symptotics which were expected to lead to the above result on the KPZ equation. Combining
heir result with [40, Theorem 1.2] yields Proposition 1.3.

We our now ready to state our main result, Theorem 1.4, which establishes upper and lower
ounds on the lower tail probability P(ΥT ≤ −s) for large but fixed times T > 0.

heorem 1.4. Let ΥT denote the solution to the half-space KPZ equation with Neumann
oundary parameter A = −1/2 and narrow-wedge initial data, centered and re-scaled as
n (1.8). Fix any η > 0, ε ∈ (0, 1/3), δ ∈ (0, 1/4), and T0 > 0. There exist positive constants
S := S(η, ε, δ, T0), C := C(T0), K1 := K1(ε, δ, T0), and K2 := K2(T0) such that for all s ≥ S
nd T ≥ T0, we have

P (ΥT ≤ −s) ≥ e−
2(1+Cε)

15π
T 1/3s5/2

+ e−K2s3
, (1.11)

nd

P (ΥT ≤ −s) ≤ e−
2(1−Cε)

15π
T 1/3s5/2

+ e−
ε
2 sT 1/3

−ηs3/2
+ e−

1−Cε
24 s3

. (1.12)

ssuming Conjecture 1, we have the stronger

P (ΥT ≤ −s) ≤ e−
2(1−Cε)

15π
T 1/3s5/2

+ e−
ε
2 sT 1/3

−K1s3−δ
+ e−

1−Cε
24 s3

. (1.13)

Conjecture 1 has a rather technical statement regarding the leading-order asymptotics of
Ablowitz–Segur solution uAS(x; γ ) to the Painlevé II equation in a certain region, named the
Stokes region. Its openness is due to the difficulty of a certain Riemann–Hilbert problem.
One major goal of this article is to highlight the direct connection between leading-order
asymptotics of uAS(x; γ ) in the Stokes region and the lower-tail of the KPZ equation, in hopes
of motivating further study of the Stokes region. For the sake of a more stream-lined discussion
of Theorem 1.4 and its proof, we postpone a detailed discussion of Conjecture 1 and the
Painlevé II equation to Section 1.3. The proof of Theorem 1.4 is given in Section 2.1. We
note that (1.12) and (1.13) differ only in the second term of each.

We can see Theorem 1.4 displays three distinct regions of decay as follows. First, note
that Proposition 1.2 implies that, as T → ∞, P(ΥT < −s) should decay according to
FGOE(−s), which is approximately exp

(
−

1
24 s3

)
for large s (see Proposition 7.1). This cubic

decay is exhibited in the last terms of (1.11)–(1.13). Note that in the range T 2/3
≫ s ≫ 0,

either the second or the third term of (1.13) dominates; in (1.11), the second term dominates
(though in the lower bound (1.11), the prefactor of the cubic exponent is not explicit). When
T → ∞, the third term of (1.13) dominates and thus recovers the cubic decay of the FGOE
tail. On the other hand, in the “short time deep tail” region s ≫ T 2/3, the first term of both
(1.11) and (1.13) dominates; however, in (1.12), the second term dominates the first term
in all regions. The 5/2 exponent and the 2

15π
prefactor for this region were first observed

n [33]. The crossover from 5/2 to cubic exponent that occurs when s is of order T 2/3 can
e understood in terms of large deviations: as T → ∞, the crossover is exhibited by the
arge deviation rate function for the half-space KPZ equation, which has speed T 2. In the full-
pace case, this crossover was first predicted by [48], which also contains the first prediction
f the full-space rate function; [22,32,35] each provide alternative methods of computing this
ate function. In particular, [22] showed that the half-space rate function is simply one-half
368
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that of the full space. The rate functions for both the full and half-space case were finally
rigorously established by [52]. Just over a year after the posting of this paper, the preprint [55]
obtained sharper upper and lower bounds than in Theorem 1.4 by proving large deviation
bounds for the Airy point process. In particular, their upper-bound on the lower tail probability
is given by e−

2(1−Cε)
15π

T 1/3s5/2
+ e−

ε
2 sT 1/3

−K s3
+ e−

1−Cε
24 s3

, so that the aforementioned crossover
rom exponent 5/2 to 3 is attained. Large deviation bounds for the Airy point process were
riginally (non-rigorously) derived by [22] using Coulomb gas heuristics.

The techniques used to prove Theorem 1.4 are heavily inspired by the work of [21] on the
ower tail of the full-space KPZ equation. Their work starts with the full-space KPZ analog
o (1.9), which was established in [14], where the full-space KPZ equation is related to a

ultiplicative functional of the Airy (GUE) point process by manipulations of an exact formula
or the one-point distribution of SHE with delta initial data. This one-point distribution formula
as simultaneously and independently computed in [3,18,24,47] and rigorously proved in [3].

n [21], the formula of [14] was manipulated to yield tight bounds on the lower tail of the
ull-space KPZ equation; however, in order to do this, [21] first establishes appropriate control
n the fluctuations of the GUE point process. Their work strongly suggests that a careful
anipulation of (1.10) would similarly yield tight bounds on the lower tail of the half-space
PZ equation, given analogous control on the GOE point process; indeed, this is the approach

aken in the current article. We now outline our approach to studying the GOE point process
nd the methods used therein.

.2. Fluctuations of the GOE point process

In Section 3.1, we define the GOE point process and describe its key properties as a simple
faffian point process (also defined in that section). The estimates on the GOE point process

needed in this article pertain to (1) controlling the locations of individual GOE points, and (2)
ontrolling the number of GOE points within intervals.

Towards (1), we detail in Section 3.2 the well-studied connection between the (stochas-
ic) Airy operator (SAO) and the GOE points, and describe the relevant known results
Propositions 3.2–3.4). In particular, the seminal work of [45] (Proposition 3.2) gives an
quivalence in distribution between the eigenvalues of the β = 1 SAO and the GOE points,
hile [21, Proposition 4.5] (Proposition 3.3) establishes uniform control on the deviations of

he (random) SAO eigenvalues from deterministic locations given by the eigenvalues (λk) of the
deterministic) Airy operator. Theorem 1.5 is then simply the combination of Propositions 3.2
nd 3.3.

heorem 1.5. For ε ∈ (0, 1), let CGOE
ε be the smallest real number such that, for all k ≥ 1,

(1 − ε)λk − CGOE
ε ≤ −ak ≤ (1 + ε)λk + CGOE

ε , (1.14)

here ak is the kth largest point of the GOE point process and λk is the kth smallest eigenvalue
f the Airy operator. Then, for all ε, δ ∈ (0, 1), there exist constants S0 := S0(ε, δ) and
:= κ(ε, δ) such that, for all s ≥ S0,

P(CGOE
ε ≥ s) ≤ κ exp

(
−κs1−δ

)
. (1.15)

Theorem 1.5 establishes an upper bound on the probability that the ak deviate away from
he (deterministic) λk , uniformly in k. This is extremely helpful because we know what the λk

ook like: Proposition 3.4 tells us that1 λk ∼
( 3π

2 k
)2/3

.

1 Here, f (k) ∼ g(k) if they are asymptotically equivalent, i.e., lim f (k)
= 1.
k→∞ g(k)
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Towards (2), we define the counting function

χGOE
: B(R) → Z≥0, χGOE(B) := #{k : ak ∈ B}, ∀B ∈ B(R),

here B(R) denotes the Borel σ -algebra of R. χGOE(·) is a non-negative integer-valued random
easure on (R,B(R), µ), where µ denotes the Lebesgue measure on R, that, informally

peaking, counts the number of GOE points in a Borel set B— see Section 3.1 for a formal
escription. We will also refer to χGOE as the GOE point process. The mean of χGOE on
ntervals is given by Theorem 1.6, which is proved at the end of Section 3.1.

heorem 1.6. Define the interval B1(s) := [−s, ∞). For any s > 0, we have

EGOE
[
χGOE(B1(s))

]
=

2
3π

s3/2
+ D1(s), (1.16)

here sups>0 |D1(s)| < ∞.

We expect that this result and other statistics for χGOE should be known; however, we were
unable to find such results in the literature. Note that the leading-order term s3/2 of (1.16)
matches the leading-order term of the expectation of the GUE (or, Airy) point process χAi on
B1(s), computed in [49]. [49] also computes the variance of and establishes a central limit
theorem for χAi.

In light of Theorem 1.6, we are interested in deviations of order s3/2 of χGOE on intervals
of size s. The upper deviations result (Theorem 1.12, proved in Section 6) will actually follow
from the results discussed in (1) and the lower deviations result (Theorem 1.11, proved in
Section 5), and so we now turn our attention to the lower deviations. To introduce important
related objects and motivate the results that follow, we begin with a preliminary computation
of the lower deviations of χGOE. Recall from Theorem 1.6 the interval B1(s). For any s ∈ R
and v > 0, define

F1(s, v) := E
[
exp

(
−vχGOE (B1(s))

)]
.

F1(s, v) is the cumulant generating function for χGOE. Now, for any positive c, v and s, taking
f (x) = e−vx in Markov’s inequality and then applying Theorem 1.6 yields

P
(
χGOE(B1(s)) − E[χGOE(B1(s))] ≤ −cs3/2)

≤ exp
(
−cvs3/2

+ vE
[
χGOE(Bs)

])
F1(−s, v) ,

= exp
(( 2

3π
− c

)
vs3/2

+ vD1(s)
)

F1(−s, v) , (1.17)

hus, we see that in order to achieve decay in (1.17) for any c > 0, one needs to achieve an
pper-bound like2

F1(−s, v) ≤ exp
(

−
2

3π
vs3/2(1 + o(1))

)
, (1.18)

or some choice of v. Obtaining (1.18) for optimal v will be a major technical focus of this
article. An important step towards this end is Theorem 1.7. Before giving this result, we
must first uncover a connection to the thinned GOE/GUE point processes with parameter
γ := γ (v) = 1 − e−v and the Ablowitz–Segur solution to the Painlevé II equation (this
connection is developed further in Section 4).

2 Here, we use “little-Oh” notation: f (s) is called o(1) if lim f (s) = 0.
s→∞
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The Ablowitz–Segur (AS) solution uAS(·, γ ) to the Painlevé II equation is a one parameter
amily of solutions to

u′′

AS = xuAS + 2u3
AS

with the boundary condition

uAS(x; γ ) =
√

γ
x−1/4

2
√

π
e−

2
3 x3/2

(1 + o(1)) (1.19)

s x → ∞. When γ = 1, uAS is called the Hastings–McLeod solution and typically denoted
HM. This particular solution was introduced in [29], where they solved the connection problem,

hat is, gave an asymptotic formula for uHM(x) as x → −∞. For γ ∈ (0, 1) fixed, the
onnection problem for uAS was partially solved by [1,2].

The thinned version of a point process with parameter γ removes each particle independently
ith probability 1 − γ ; we discuss the thinned GOE point process formally in Section 4.1. In
heorem 4.4, we prove by way of a Fredholm Pfaffian formula (defined in Section 4.2) that

F1(s, v) = F1(s, v) , for all s ∈ R and v ≥ 0,

where F1(s, v) denotes the distribution function of the largest particle of the thinned GOE point
process with parameter γ (v). Let F2(s, v) denote the distribution function of the largest particle
of the thinned GUE point process with parameter γ (v). In Proposition 4.1, we recall a formula
from [17] that relates F1(s, v) to F2(s, 2v) and uAS, described in the next subsection. It is a
result of [21], restated here as Proposition 4.2, that

F2(s, v) = F2(s, v) := E
[
exp

(
−vχAi ([s, ∞))

)]
, for all s ∈ R and v ≥ 0.

Combining Proposition 4.1, Proposition 4.2, and Theorem 4.4 yields Theorem 1.7, which yields
a formula for F1(s, v) in terms of F2(s, v) and uAS. Theorem 1.7 is proved in Section 4.3.

Theorem 1.7. Fix any s ∈ R and v ≥ 0. Define γ := γ (v) = 1 − e−v and γ2 := γ2(v) =

− e−2v; note that γ2 ∈ [0, 1). Then

F1(s, v) =

√
F2(s, 2v)

√
1 +

cosh µ(s, γ2) −
√

γ2 sinh µ(s, γ2) − 1
2 − γ

(1.20)

here

µ(s, γ2) :=

∫
∞

s
uAS(x; γ2) dx .

In Corollary 5.1, we give an asymptotic expansion for F1(s, v) for any fixed v > 0 that
atisfies (1.18), thus yielding exponential decay on the right-hand of (1.17) with exponent
s3/2. This yields Eq. (1.32) of Theorem 1.11. However, the authors of [21] found optimum

ecay of F2(s, 2v) when v =
1
2 s

3
2 −δ . Indeed, part of [21, Theorem 1.7] (recorded here as

roposition 4.2) states that, for any δ ∈ (0, 2/5), as s → ∞,

F2(−s, 2v̄) ≤ exp
(
−

2
3π

s3−δ
+ O(s3−

13δ
11 )
)

. (1.21)

Fix δ ∈ (0, 2/5). Throughout this paper, we fix

v̄ := v̄(s, δ) =
1

s
3
2 −δ and γ̄ := γ2(v̄) = 1 − exp(−s

3
2 −δ) . (1.22)
2
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Now, take v := v̄ in the notation of Theorem 1.7. Then upon substituting (1.21) into
heorem 1.7, we see that obtaining the bound

exp(|µ(−s, γ̄ )|) = exp(o(s3−δ)) (1.23)

ould actually yield (1.18) with v = v̄ there. The result would be exponential decay on the
right-hand side (1.17) with exponent −s3−δ instead of −s3/2. Thus, showing (1.23) translates
directly into a vastly improved bound on the right-hand of (1.17).

To achieve (1.23), one needs to control uAS(x; γ̄ ) for all x ∈ [−s, ∞) and s → ∞. While
much is known about both uAS(x; γ ) and µ(s; γ ) for values of γ fixed (with respect to x),
much less is understood for general values of γ . As we show in the following subsection, there
is a particular region of x , known as the Stokes region, on which leading-order asymptotics
of uAS(x; γ̄ ) do not exist at this time. This lack of knowledge prevents us from bounding in
absolute value the integral of uAS(x; γ̄ ) on the Stokes region, and therefore, we cannot establish
(1.23); however, we show that given crude leading-order asymptotics on uAS in the Stokes
region (see Conjecture 1), we can obtain (1.23).

1.3. Asymptotics of the Ablowitz–Segur solution to the Painlevé II equation

In this subsection, we recall what is known and unknown about the asymptotic properties of
the Ablowitz–Segur solution to the Painlevé II equation as both x and γ vary and detail what
these results imply for F1(s, v).

As explained in the last paragraph of the previous subsection, we are interested in uAS(x; γ̄ )
over x ∈ [−s, ∞), where γ̄ := 1 − exp(−s

3
2 −δ), for any δ ∈ (0, 2/5). Our goal is to show

1.23), for which we seek appropriate leading-order asymptotics of uAS(x; γ̄ ) as x → −∞. To
nderstand uAS(x; γ ) for γ that may vary with x , we turn to the important work of Bothner [16],
hich contains the most up-to-date results on such asymptotics in the case x → −∞ and

γ | ↑ 1 (regular transition in [16]) or the case x → −∞ and |γ | ↓ 1 (singular transition
n [16]). These results were achieved via a non-linear steepest descent analysis applied to a
ertain Riemann–Hilbert problem. Since s → ∞, we are interested in the regular transition
esults of [16]. To state these results, we define the following parameter for any x ∈ R and
∈ [0, 1):

ℵ := ℵ(x, γ ) =
−1

(−x)3/2 log(1 − γ ) . (1.24)

ote that the exponential decay in (1.19) implies that for any constant x0 > 0, the integral
f uAS(x; γ̄ ) over [−x0, ∞) is bounded. The remaining region x ∈ [−s, −x0) is contained
n ℵ ∈ (0, ∞). For any ζ ∈ (0, 2

√
2

3 ), Theorems 1.10 and 1.12 of [16] achieve asymptotic
expressions for uAS(x; γ ) as x → −∞ in the regions ℵ ∈ I1(ζ ) :=

(
0, 2

√
2

3 − ζ
]

and ℵ ∈

I2 :=
[ 2

√
2

3 , ∞
)
, respectively.3 [16, Theorem 1.12] is transcribed here as Proposition 4.6. [16,

heorem 1.10] gives an expression in terms of Jacobi theta functions and elliptic integrals that is
seudoperiodic. In Lemma 4.5, we manipulate this result to show that there exists ζ0 ∈ (0, 2

√
2

3 )
such that uAS(x; γ̄ ) = O((−x)1/2) uniformly over ℵ ∈

(
0, 2

√
2

3 − ζ0
]

as x → −∞. From
emma 4.5 and Proposition 4.6, it follows almost immediately that∫

ℵ∈I1(ζ0)∪I2

|uAS(x; γ̄ )| dx = O(s3/2) . (1.25)

3 Actually, the expression holds for any fixed f ∈ R and I2( f ) :=
[ 2

√
2

3 −
f

(−x)3/2 , ∞
)
. However, considering f

arge (but fixed) does not change our results asymptotically, and so we simply take f = 0.
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In [16], I1(ζ ) is named the regular Boutroux region and I2 the Hastings–McLeod region; the
remaining region of ℵ > 0 was named the Stokes region.

Definition 1.8 (Stokes Region). For any ζ ∈ (0, 2
√

2
3 ), the region ℵ ∈ ( 2

√
2

3 −ζ, 2
√

2
3 ) is referred

o as the Stokes region.

[16] does not give a full asymptotic expression for uAS(x; γ ) in the Stokes region, stating
that “the nonlinear steepest descent analysis becomes increasingly difficult.” Moreover, at the
time of this paper’s release, it appears that no progress has been made towards such results
in the Stokes region [15]. As a result, not enough is currently known about uAS in the Stokes
region to obtain (1.23), and thus we cannot at present achieve (1.18) with v =

1
2 s

3
2 −δ for any

∈ (0, 2/5).
However, observe that only a crude upper-bound on uAS(x; γ̄ ) is needed in order to show

1.23). Indeed, for ℵ̄ := ℵ(x, γ̄ ), the part of the Stokes region that we are interested in is
2
√

2
3 − ζ0,

2
√

2
3 ), which is equivalent to

x ∈ I0 := I0(s, δ) =
(
−( 2

√
2

3 − ζ0)−2/3s1−
2
3 δ, −( 2

√
2

3 )−2/3s1−
2
3 δ
)
. (1.26)

ote that I0 has length Cs1−
2
3 δ , where C denotes some constant.

Conjecture 1. Fix δ ∈ (0, 2/5). Recall γ̄ := γ̄ (s, δ) from (1.22), and recall I0 := I0(s, δ)
rom (1.26). As s → ∞, we have the following uniformly over all x ∈ I0 (equivalently,
¯ := ℵ(x, γ̄ ) ∈ ( 2

√
2

3 − ζ0,
2
√

2
3 )):

|uAS(x; γ̄ )| = o(s2−
δ
3 ) . (1.27)

Assuming Conjecture 1, we immediately have∫
I0

|uAS(x; γ̄ )| dx = o(s3−δ) , (1.28)

o that (1.23) follows from (1.25) and the last display. To be precise, we have the following
esults.

emma 1.9. Fix δ ∈ (0, 2/5). Recall the function µ from Theorem 1.7. There exist positive
constants C := C(δ) and S0 := S0(δ) such that for all s ≥ S0,

|µ(−s, γ̄ )| ≤ Cs3/2
+

⏐⏐⏐⏐∫
I0

uAS(x; γ̄ ) dx
⏐⏐⏐⏐ . (1.29)

ssuming Conjecture 1, we have the following expression as s → ∞,

|µ(−s, γ̄ )| = o(s3−δ) . (1.30)

Lemma 1.9 is proved in Section 4.4. Combining this result with Theorem 1.7 and (1.21)
will yield the following bound.

Theorem 1.10. Assume Conjecture 1. For δ ∈ (0, 2/5), we have the following expression as
s → ∞

F1

(
−s,

1
2

s
3
2 −δ

)
≤ exp

(
−

1
3π

s3−δ(1 + o(1))
)

. (1.31)
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Theorem 1.10 is proved in Section 4.3.
Regarding evidence for the validity of Conjecture 1, we note that a leading-order expression

or uAS(x; γ̄ ) was obtained in [16, Theorem 1.13] for the portion of the Stokes region satisfying

ℵ ≥
2
√

2
3 − f3

log(−x)3/2

(−x)3/2 ,

or any f3 < 7/6. The expression shows that uAS(x; γ̄ ) = O(x1/2) uniformly over this region
of ℵ, which is consistent with Conjecture 1. We note further that the bound in (1.27) is much
looser than both the aforementioned result and the existing leading-order asymptotics given
for uAS(x; γ̄ ) outside of the Stokes region (Proposition 4.6 and Lemma 4.5). Beyond these
observations, we do not attempt to provide further justification for Conjecture 1.

1.4. Main results on the GOE Point Process

Theorems 1.11 and 1.12 establish the first bounds on the fluctuations of χGOE below and
above its mean, respectively, and may be of independent interest.

Theorem 1.11. Fix any η > 0, c > 0, and δ ∈ (0, 2/5). There exists a positive constant
S0 := S0(η, c) such that for all s ≥ S0,

P
(
χGOE[−s, ∞) − E[χGOE([−s, ∞))] ≤ −cs3/2)

≤ exp
(
−ηs3/2) . (1.32)

Furthermore, assuming Conjecture 1, there exist positive constants S0 := S0(δ) and K := K (δ)
such that for all s ≥ S0 and c > 0,

P
(
χGOE(B1(s)) − E[χGOE(B1(s))] ≤ −cs3/2)

≤ exp
(

−
1
2

cs3−δ(1 + o(1))
)

, (1.33)

here B1(s) := [−s, ∞).

Theorem 1.11 is proved in Section 5, essentially by combining (1.17), (1.31), and (5.1).

heorem 1.12. Consider the intervals

B1(ℓ) := [−ℓ, ∞), and
Bk(ℓ) := [−kℓ, −(k − 1)ℓ) for k ∈ Z>1 .

ix c > 0 and δ ∈ (0, 2/5). There exist L0 := L0(c, δ) and C := C(c, δ) > 0 such that, for all
≥ L0 and for all k ∈ Z≥1, we have

P
(
χGOE(Bk(ℓ)) − E

[
χGOE(Bk(ℓ))

]
≥ cℓ3/2)

≤ exp
(
−Cℓ1−δ

)
. (1.34)

Theorem 1.12 is proved in Section 6.

.5. Outline

We now give an outline for the remainder of the article. In Section 2, we prove Theorem 1.4
y realizing the left-hand side of the Laplace transform formula (1.10) as an approximate
ndicator function for P(ΥT < −s). This translates our problem into bounding a multiplicative
unctional of the GOE point process, i.e., the right-hand side of (1.10). These bounds are given
y Proposition 2.2.

We next turn to a fine analysis of the GOE point process, which involves estimating the
ypical locations of the GOE points in large intervals and bounding their deviations from
374
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these locations. In Section 3, we define the GOE point process (and Pfaffian point processes
n general), and use known results on its correlation functions to prove Theorem 1.6. We
hen discuss the important connection with the eigenvalues of the stochastic Airy operator
abbreviated SAO). In particular, the result of [45] (Proposition 3.2) gives an equivalence
n distribution between the GOE points and the negatives of the SAO eigenvalues. Further-

ore, [21, Proposition 4.5] (Proposition 3.3) establishes an upper bound on deviations of the
AO eigenvalues (uniformly over all eigenvalues) from their “typical locations”, which are
iven by the eigenvalues of the Airy operator. The locations of these deterministic eigenvalues
re given by a result of [37] (Proposition 3.4). Combining Propositions 3.2 and 3.3 yields
heorem 1.5. Thus, we are able to effectively estimate the locations of individual GOE points.

In Section 4, we turn our attention to the cumulant generating function F1(−s, v) for
he GOE point process. The importance of this function was established in Eq. (1.17) of
ection 1.2. Via a Fredholm Pfaffian formula for F1(−s, v), we prove in Theorem 4.4 a key
quality between F1(−s, v) and the distribution function of the largest eigenvalue of the thinned
OE point process. This allows us to translate the work of [17] on this distribution function to

F1(−s, v), which in particular leads to the proofs of Theorem 1.7 and (assuming Lemma 1.9)
heorem 1.10 in Section 4.3. Lemma 1.9 is proved in Section 4.4.

In Sections 5 and 6 , we prove Theorems 1.11 and 1.12 respectively. Theorem 1.11 is
roved essentially by substituting the results of Corollary 5.1 and Theorem 1.10 into (1.17).
ur strategy for proving Theorem 1.12 involves approximating the number of GOE points in
closed interval of length s by carefully estimating the nearest GOE points to the endpoints

f this interval, and then bounding the fluctuations of these GOE points via Theorem 1.5.
In Section 7, we apply our work on the GOE point process to prove Proposition 2.2.

. Proof of the main theorem

We begin by establishing upper and lower bounds on the right-hand side of the Laplace
ransform formula (1.10) in Proposition 2.1.

roposition 2.1. Fix any η > 0, ε ∈ (0, 1/3), δ ∈ (0, 1/4), and T0 > 0. There exist positive
onstants S0 := S0(η, ε, δ, T0), C := C(T0), K1 := K1(ε, δ, T0) > 0, and K2 := K2(T0) > 0
uch that for all s ≥ S0 and T ≥ T0, we have

E
[

exp
(

−
1
4

exp
(
T 1/3(ΥT + s)

))]
≥ e−

2(1+Cε)
15π

T 1/3s5/2
+ e−K2s3

(2.1)

and

E
[

exp
(

−
1
4

exp
(
T 1/3(ΥT + s)

))]
≤ e−

2(1−Cε)
15π

T 1/3s5/2
+ e−

ε
2 sT 1/3

−ηs3/2
+ e−

1−Cε
24 s3

. (2.2)

ssuming Conjecture 1, we have the stronger upper bound

E
[

exp
(

−
1
4

exp
(
T 1/3(ΥT + s)

))]
≤ e−

2(1−Cε)
15π

T 1/3s5/2
+ e−

ε
2 sT 1/3

−K1s3−δ
+ e−

1−Cε
24 s3

.

(2.3)

We prove Proposition 2.1 in Section 2.2. We now prove the main result.
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2.1. Proof of Theorem 1.4

From Markov’s inequality, we have

P(ΥT ≤ −s) = P
(

exp
(

−
1
4

exp
(
T 1/3(ΥT + s)

))
≥ e−1/4

)
≤ e1/4E

[
exp

(
−

1
4

exp
(
T 1/3(ΥT + s)

))]
.

rom the above, we see that (2.2) and (2.3) imply (1.12) and (1.13) of Theorem 1.4,
espectively.

We now show that (2.1) yields (1.11). Let s̄ := (1 − ε)−1s. Observe that

R := E
[

exp
(

−
1
4

exp
(
T 1/3(ΥT + s̄)

))]
≤ E

[
1 (ΥT ≤ −s) + 1 (ΥT > −s) exp

(
−

1
4

exp
(
T 1/3(ΥT + s̄)

))]
≤ E

[
1 (ΥT ≤ −s) + 1 (ΥT > −s) exp

(
−

1
4

exp
(
εs̄T 1/3))] . (2.4)

The second inequality follows from the fact that ΥT > −s implies ΥT + s̄ > εs̄. Continuing
from (2.4), we compute

R ≤ P(ΥT ≤ −s) + exp
(

−
1
4

exp
(
εs̄T 1/3)) . (2.5)

It follows from (2.1) that for all s ≥ S := S(ε, δ, T0) and T ≥ T0,

R ≥ exp
(

−(1 + Cε + C ′ε)
2

15π
T 1/3s5/2

)
+ exp

(
−K2s3) . (2.6)

ere, the C ′ε term appears because s̄5/2
≤ s5/2(1 + C ′ε) for some constant C ′ > 0. We now

ote that there exists a constant S′
:= S′(ε, δ, T0) such that for all s ≥ S′ and T ≥ T0,

exp
(
εs̄T 1/3)

≥ T 1/3 2s5/2

15π
− log ε, and thus

exp
(
− exp

(
εs̄T 1/3))

≤ ε exp
(

−
2

15π
T 1/3s5/2

)
. (2.7)

olving for P(ΥT ≤ −s) in (2.5) and substituting the lower bound (2.6) on R and the upper
ound (2.7) on exp

(
− exp

(
εs̄T 1/3

))
yields, for all s ≥ max{S, S′

} and for all T ≥ T0,

P (ΥT ≤ −s) ≥ (1 − ε) exp
(

−(1 + (C + C ′)ε)
2

15π
T 1/3s5/2

)
+ exp

(
−K2s3) .

he multiplicative factor (1−ε) can be absorbed into the (1+(C+C ′)ε) factor on the right-hand
ide above. Finally, taking C := C + C ′ yields the right-hand side of (1.11), thus completing
he proof of Theorem 1.4. □

.2. Proof of Proposition 2.1

As above, let (a1 > a2 > . . . ) denote the GOE point process. Define

Is(x) :=
1√

1/3
, and (2.8)
1 + exp(T (x + s))
376
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Js(x) := − log(Is(x)) =
1
2

log(1 + exp(T 1/3(x + s))) . (2.9)

e now give upper and lower bounds on EGOE
[∏

∞

k=1 Is(ak)
]
. These bounds and Proposition 1.3

llow us to complete the proof of Proposition 2.1.

roposition 2.2. Fix any η > 0, ε ∈ (0, 1/3), δ ∈ (0, 1/4), and T0 > 0. There exist positive
onstants S0 := S0(η, ε, δ, T0), C := C(T0), K1 := K1(ε, δ, T0) > 0, and K2 := K2(T0) > 0
uch that for all s ≥ S0 and T ≥ T0, we have

EGOE

[
∞∏

k=1

Is(ak)

]
≤ e−

2(1−Cε)
15π

T 1/3s5/2
+ e−

ε
2 sT 1/3

−ηs3/2
+ e−

1−Cε
24 s3

(2.10)

nd

EGOE

[
∞∏

k=1

Is(ak)

]
≥ e−

2(1+Cε)
15π

T 1/3s5/2
+ e−K2s3

. (2.11)

ssuming Conjecture 1, we have the stronger upper bound

EGOE

[
∞∏

k=1

Is(ak)

]
≤ e−

2(1−Cε)
15π

T 1/3s5/2
+ e−

ε
2 sT 1/3

−K1s3−δ
+ e−

1−Cε
24 s3

(2.12)

We complete the proof of (2.11) and (2.12) in Section 7.1, and the proof of(2.10) in
Section 7.2.

Proof of Proposition 2.1. This follows immediately from Propositions 1.3 and 2.2. □

. The GOE point process

Proposition 2.2 reduces our problem to a question about the GOE point process. In this
ection, we formally define this process and examine results pertaining to the statistics of the
rocess, such as the distribution of the GOE points, the typical locations of individual points,
nd deviations away from these typical locations. The results developed here connect the GOE
oint process to the stochastic Airy operator (see Section 3.2) and will be crucial to the proofs
hat follow.

.1. First notions

The GOE point process, denoted by (a1 > a2 > · · · ) or χGOE, is a simple Pfaffian point
process on (R,B(R), µ), where here µ denotes Lebesgue measure. We define this object
now. We first define point processes via random point configurations (see, for instance, [4,
Section 4.2.1]). Give R the Borel sigma algebra B(R) equipped with a positive Radon measure
µ (not necessarily Lebesgue). Let Conf(R) denote the space of configurations of R, that is,
discrete subsets. For any B ∈ B(R) and X ∈ Conf(R), let NB(X ) := #{B ∩ X}. Endow Conf(R)

ith the sigma algebra Σ generated by the cylinder sets C B
n := {X ∈ Conf(R) : NB(X ) = n},

or n ∈ Z+. A point process is a probability measure ν on (Conf(R),Σ ). [4, Lemma 4.2.2]
hows that a random configuration X with distribution ν can be associated to a non-negative
nteger-valued random measure χ on (R,B(R), µ) such that

χ (B) = N (X ),
B
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and this random measure χ will also be referred to as the point process when clear. A point
process is called simple if µ(e ∈ R : χ ({e}) > 1) = 0. Intuitively, a simple point process
χ evaluated on a Borel set B counts the number of points contained in B of the designated
andom configuration.

Now, for k ≥ 1, consider the measure µk on Rk such that for disjoint Borel sets B1, . . . , Bk ∈

(R),

µk(B1 × · · · × Bk) = Eν

[
# {k-tuples of distinct points x1 ∈ X ∩ B1, . . . , xk ∈ X ∩ Bk}

]
.

Assuming that µk is absolutely continuous with respect to µ⊗k , we define the k-point
correlation function ρk of χ to be the Radon–Nykodym derivative of µk with respect to µ⊗k .
This is a locally integrable function ρk : Rk

→ [0, ∞) such that, for measurable functions
f : R → C, we have

Eν

⎡⎣ ∑
(x1,...,xk )∈Xk

f (x1) . . . f (xk)

⎤⎦ =

∫
Rk

ρk(x1, . . . , xk) f (x1) . . . f (xk) dµ⊗k . (3.1)

Here, X is a random configuration with law ν. One might note that our definition of ρk does
not specify its value on points (x1, . . . , xk) where xi = x j for some i ̸= j . On such points,
we set ρk = 0; to understand the reasoning behind this, see [4, Remark 4.2.4]. We call χ a
Pfaffian point process if there exists a 2 × 2 skew-symmetric matrix-kernel K : R2

→ M2(C)
such that

ρk(x1, . . . , xk) = Pf[K (xi , x j )]k
i, j=1,

where Pf denotes the Pfaffian.
The GOE point process is the simple Pfaffian point process with correlation kernel K GOE,

whose explicit form can be found, for instance, in [9, Definition 6.1] (we will not need the
explicit form of K GOE here). The GOE point process can be constructed as the limiting point
process of the largest eigenvalues of the GOE n × n ensemble under so-called edge scaling,
that is, centering by 2

√
n and scaling by n1/6. We write χGOE to denote the associated random

measure and ρGOE
k to denote the kth correlation function of the GOE point process. We also

write (a1 > a2 > · · · ) to denote the random configuration of GOE points.
Proposition 1.3 and the work achieved in Section 2.1 show that studying the GOE point

process can serve as a proxy for studying the lower tail of the half-space KPZ equation.
Theorem 1.6 establishes a basic statistic of the GOE point process: its expectation on the
interval [−s, ∞), for any s > 0. We now prove this theorem.

Proof of Theorem 1.6. Note that for any point process χ with one-point correlation function
1, we have on any interval I ⊆ R,

E [χ (I )] =

∫
I
ρ1(x) dx .

hus, we have

EGOE
[
χGOE(B1(s))

]
=

∫
∞

ρGOE
1 (x) dx , (3.2)
−s

378



Y.H. Kim Stochastic Processes and their Applications 142 (2021) 365–406

w
m

N
a

S

a
(

w

f

for s > 0. Let ρGUE
1 denote the one-point correlation function for χGUE. From Equations (7.67)

and (7.147) of [27], we have the relation4

ρGOE
1 (x) = ρGUE

1 (x) +
1
2

Ai(x)
(
1 −

∫
∞

x
Ai(t) dt

)
, (3.3)

here Ai(·) denotes the Airy function. Since
∫

∞

−∞
Ai(t) dt = 1 ([39, Equation 9.10.11]), we

ay write (3.3) as

ρGOE
1 (x) = ρGUE

1 (x) +
1
2

Ai(x)
∫ x

−∞

Ai(t) dt . (3.4)

ow, [27, Equation 7.69], [39, Equation 9.7.9], and [39, Equation 9.10.6] yield the following
symptotic expansions for ρGUE

1 (x), Ai(x), and
∫ x
−∞

Ai(t) dt respectively, as x → −∞:

ρGUE
1 (x) =

√
−x
π

−
cos

( 4
3 (−x)3/2

)
4π (−x)

+ O
(
(−x)−5/2) , (3.5)

Ai(x) =

cos
(

2
3 (−x)3/2

−
π
4

)
√

π (−x)1/4
+ O

(
(−x)−7/4

)
, and (3.6)

∫ x

−∞

Ai(t) dt =

cos
(

2
3 (−x)3/2

+
π
4

)
√

π (−x)3/4
+ O

(
(−x)−9/4

)
. (3.7)

ubstituting (3.5)–(3.7) into (3.4) yields

ρGOE
1 (x) =

√
−x
π

+ O
(
(−x)−5/2) ,

s x → −∞ (note that the cosine terms above cancel with one another after substitution into
3.4)). It follows that∫

−1

−s
ρGOE

1 (x) dx =
2

3π
s3/2

+ D1(s) , (3.8)

here D1(s) satisfies sups>0 |D(s)| < ∞.
Next, because ρGUE

1 (x), Ai(x), and
∫ x
−∞

Ai(t) dt are bounded over x ∈ [−1, 0], we have∫ 0

−1
ρGOE

1 (x) dx = D2 , (3.9)

or some constant D2 < ∞.
It remains to handle the integral of ρGOE

1 (x) over x ∈ [0, ∞). [27, Equation 7.72] states that

ρ1(x) = e−4x3/2/3 (1 + o(1)) ,

and thus we have
∫

∞

0 ρGUE
1 (x) dx = D3, for some constant D3. Recall that Ai(x) ≥ 0 for

x ≥ 0. It then follows from (3.4) and the triangle inequality that⏐⏐⏐⏐∫ ∞

0
ρGOE

1 (x) dx
⏐⏐⏐⏐ ≤ |D3| +

1
2

∫
∞

0
Ai(x)

⏐⏐⏐⏐∫ x

−∞

Ai(t) dt
⏐⏐⏐⏐ dx . (3.10)

4 [27, Equation 7.147] writes this equation with “K soft(x, x)” instead of ρGUE
1 (x), as we have here, where

K soft(·, ·) is defined in [27, Equation 7.12]. Our expression follows from [27, Equation 7.67], which shows that
K soft(x, x) = ρGUE(x), for any x ∈ R.
1
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Since
∫

∞

−∞
Ai(t) dt = 1,

∫ 0
−∞

Ai(t) dt = 2/3 ([39, Equation 9.10.11]), and Ai(t) ≥ 0 for t ≥ 0,
e have

⏐⏐∫ x
−∞

Ai(t) dt
⏐⏐ ≤

⏐⏐∫∞

−∞
Ai(t) dt

⏐⏐ = 1 for all x ≥ 0. It then follows from (3.10) and
he identity

∫
∞

0 Ai(t) dt = 1/3 that∫
∞

0
ρGOE

1 (x) dx = D4 , (3.11)

or some constant D4. Combining Eqs. (3.2), (3.8), (3.9), and (3.11) yields

EGOE
[
χGOE(B1(s))

]
=

2
3π

s3/2
+ D1(s) , (3.12)

here D1(s) = D1(s) +D2 +D4, and therefore clearly satisfies sups>0 |D(s)| < ∞. Thus, we
ave (1.16). □

.2. The β stochastic airy operator

We now apply and enhance the tools developed in [21, Section 4.3] to connect the GOE
oint process with the eigenvalues of the stochastic Airy operator Hβ with β = 1. Observed
n [25] and proved in [45, Theorem 1.1], Proposition 3.2 gives an equivalence in distribution
etween the eigenvalues of Hβ and the negatives of the GOE points. Proposition 3.3 was proved
n [21, Proposition 4.5], and establishes a uniform bound on the deviations of the (random)

β eigenvalues from the eigenvalues of the (deterministic) Airy operator, and Theorem 1.5
stablishes the same uniform bound on deviations of the GOE points from these deterministic
igenvalues. Finally, Proposition 3.4, which was proved in [37], approximates the location of
ach eigenvalue of the Airy operator.

We now define the stochastic Airy operator through the theory of Schwartz distributions.

efinition 3.1 (stochastic Airy operator). Let D := D(R+) denote the space of distributions,
.e., the continuous dual of the space of smooth, compactly supported test functions equipped
ith the topology of uniform convergence of all derivatives on compact sets. All formal
erivatives of any continuous function f are distributions, with action on any test function
∈ C∞

0 given by integration by parts as follows:

≺ φ, f (k)(x) ≻:= (−1)k
∫

f (x)φ(k)(x) dx,

here ≺ ·, · ≻ is notation not to be confused with the L2 inner product ⟨·, ·⟩. In particular,
ince Brownian motion B is a random continuous function, its formal derivative B ′ is a random
lement of D. The β > 0 stochastic Airy operator is a random linear map

Hβ : H 1
loc → D

uch that

Hβ f = − f (2)
+ x f +

2
√

β
f B ′,

here H 1
loc is the space of functions f : R+

→ R such that for any compact I , f ′1(I ) ∈ L2.
hough D is only closed under multiplication by smooth functions and f ∈ H 1

loc, we make
ense of f B ′ as the derivative of

∫ y
0 f B ′ dx := −

∫ y
0 B f ′ dx + f (y)By − f (0)B0. The Airy

perator A := −∂2
+ x is the non-random part of H .
x β
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To define the eigenvalues/eigenfunctions of Hβ , we define the Hilbert space L∗ with norm

∥ f ∥
2
∗

=

∫
∞

0

(
( f ′)2

+ (1 + x) f 2) dx , L∗
:= { f : f (0) = 0, ∥ f ∥∗ < ∞} .

e say a pair ( f,Λ) ∈ L∗
× R is an eigenfunction/eigenvalue pair for Hβ if Hβ f = Λ f .

The following is a special case of [45, Theorem 1.1], namely, the β = 1 case.5

roposition 3.2 ([45, Theorem 1.1]). Let (Λ1 < Λ2 < . . . ) denote the eigenvalues of H1, and
ecall that (a1 > a2 > . . . ) denotes the GOE point process. Then for any k ≥ 1, we have

(−a1, . . . ,−ak)
(d)
= (Λ1, . . . ,Λk) . (3.13)

[45] and [53] show that there exists a random band with uniform width Cε around each
igenvalue of the Airy operator such that each eigenvalue of Hβ is contained in the band
round the corresponding Airy operator eigenvalue.

roposition 3.3 ([21, Proposition 4.5]). Denote the eigenvalues of the Airy operator A by
λ1 < λ2 < . . . ) and the eigenvalues of Hβ by (Λβ

1 < Λ
β

2 < . . . ). For any ε ∈ (0, 1), define
he random variable Cε as the smallest real number such that for all k ≥ 1,

(1 − ε)λk − Cε ≤ Λ
β

k ≤ (1 + ε)λk + Cε.

hen for all ε, δ ∈ (0, 1), there exist positive constants S0 := S0(ε, δ), and κ := κ(ε, δ) such
hat for all s ≥ S0,

P
(

Cε ≥
s

√
β

)
≤ κ exp

(
−κs1−δ

)
. (3.14)

Proposition 3.3 gives an exponential upper-tail bound on Cε that will be crucial to our proof
of Theorem 1.12. Note that Theorem 1.5 follows immediately from Propositions 3.2 and 3.3.

To prove Theorem 1.12, we will also need the following results on the approximate location
of eigenvalues of the Airy operator A = −∂2

x + x .

Proposition 3.4 ([37]). If the eigenvalues of the Airy operator A are denoted by (λ1 < λ2 <

. . . ), then for all n ≥ 1, we have

λn =

(
3π

2

(
n −

1
4

+ R(n)
))2/3

, (3.15)

here for some large constant K ∈ R, we have

|R(n)| ≤ K/n.

Corollary 3.5. For any T ∈ R≥0, define k := k(T ) = #{n : λn ≤ T }. We have

k =
2

3π
T 3/2

+ C1(T ),

here supx>0 |C1(x)| < 1; thus,

k − E
[
χGOE[−T, ∞)

]
= OT (1) . (3.16)

5 The result is proved for any β: under edge scaling, the k largest eigenvalues of the n × n Hermite β-ensemble
onverge jointly in distribution to the smallest k eigenvalues of H as n → ∞.
β
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Proof. From (3.15), it is clear that k = ⌊x⌋, where x ∈ R≥0 satisfies

T =

(
3π

2

(
x −

1
4

+ R(x)
))2/3

. (3.17)

olving for x gives

x =
2

3π
T 3/2

+
1
4

+ R(x) . (3.18)

ecall from Proposition 3.4 that |R(x)| ≤ K/x . As T approaches ∞, we have x ∼
2

3π
T 3/2, and thus k will simply be the closest integer to 2

3π
T 3/2

+
1
4 . From the expression[

χGOE[−T, ∞)
]

=
2

3π
T 3/2

+ D1(T ) given by Theorem 1.6, the corollary follows. □

4. The cumulant generating function for χGOE

The proof of Theorem 1.11, which makes up the contents of Section 5, will boil down to
estimating the cumulant generating function for χGOE,

F1(s, v) := E
[
exp

(
−vχGOE ([s, ∞))

)]
.

The main result of this section is Theorem 4.4, which connects F1(s, v) to the distribution
unction of the largest eigenvalue of the thinned GOE point process via a Fredholm Pfaffian.
heorem 4.4 is a major input towards Corollary 5.1 and Theorem 1.10, which provide the
eeded bounds on F1(s, v) to prove Theorem 1.11 in Section 5.

.1. The thinned GOE point process and the Painlevé II equation

Theorem 4.4 equates F1(s, v) to the distribution function F1(s, v) of the largest particle
1(γ ) of the thinned GOE point process with parameter γ := 1−e−v . This is the point process
btained by independently removing each particle of the GOE point process (see Section 3)
ith probability 1 − γ . We may similarly define the thinned GUE point process and the
istribution function F2(s, v) of the largest particle of the thinned GUE point process with
arameter γ . Note that, like the GOE point process, the thinned GOE point process is simple
nd Pfaffian. To see that it is Pfaffian, let {Yi }i∈N be a sequence of i.i.d. Bernoulli random
ariables such that P(Y1 = 1) = γ . Let νGOE and ν thin be the laws on Conf(R) associated to the
OE and thinned GOE point processes respectively, and let X and X̂ be random configurations
ith laws νGOE and ν thin respectively. Then, for a measurable function f : R → C, we have

E

⎡⎣ ∑
(x1,...,xk )∈X̂k

f (x1) . . . f (xk)

⎤⎦ = E

⎡⎣ ∑
(x1,...,xk )∈Xk

k∏
i=1

f (xi )Yi

⎤⎦
= γ kE

⎡⎣ ∑
(x1,...,xk )∈Xk

k∏
i=1

f (xi )

⎤⎦ ,

here the last equality follows from the independence of the Yi from each other and from the
OE point process. We then have from (3.1) that, for any k ≥ 1,

ρ thin
k = γ kρGOE

k ,

here ρ thin
k denotes the kth correlation functions for the thinned GOE point process. Further-

ore, it follows that the correlation kernel for the thinned GOE point process is γ K GOE.
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Proposition 4.1 gives a formula for F1(s, v) in terms of F2(s, v) and a certain integral of the
blowitz–Segur (AS) solution uAS(·, γ ) to the Painlevé II equation. Recall from Section 1.3

hat uAS is a one-parameter family of solutions to

uAS(s, γ )′′ = xuAS(s, γ ) + 2u3
AS(s, γ )

ith boundary condition

uAS(s, γ ) =
√

γ
s−1/4

2
√

π
e−

2
3 s3/2

(1 + o(1)), as s → ∞.

Proposition 4.1 comes from [17, Proposition 1.1], though in [17, Remark 1.2], the authors note
that the formula can be obtained via some combination of results in [12].

Proposition 4.1 ([17]). For any s ∈ R and v > 0, we have

F2(s, v) = exp
(

−

∫
∞

s
(t − s)u2

AS(t; γ ) dt
)

(4.1)

nd

F1(s, v) =

√
F2(s, 2v)

√
1 +

cosh µ(s, γ2) −
√

γ2 sinh µ(s, γ2) − 1
2 − γ

, (4.2)

here γ , µ(s, γ2) and γ2 are defined as in the statement of Theorem 1.7.

Let F2(s, v) := E
[
exp

(
−vχAi ([s, ∞))

)]
be the cumulant generating function of the

GUE point process. One of the major technical achievements of [21] is given below as
Proposition 4.2, which bounds F2(s, v) by equating it to F2(s, v) and then using the connection
o the Painlevé II equation given by (4.1) to conduct a fine analysis.

roposition 4.2 ([21, Theorem 1.7]). For all v and s in R, we have

F2(s, v) = F2(s, v) = exp
(

−

∫
∞

−s
(x + s)u2

AS(x; γ ) dx
)

, (4.3)

where γ := γ (v) = 1 − e−v . Furthermore, for any fixed δ ∈ (0, 2
5 ), as s goes to ∞,

log F2(−s, s
3
2 −δ) ≤ −

2
3π

s3−δ
+ O(s3−

13δ
11 ). (4.4)

4.2. Fredholm Pfaffians

The Fredholm Pfaffian was first defined in [44]; the definition reproduced below comes
from [5].

Definition 4.3. Let µ be a reference measure on R, and let K (x, y) be a 2 × 2 matrix-valued
skew-symmetric kernel on R2. Define

J (x, y) = 1(x=y)

(
0 1

−1 0

)
, ∀x, y ∈ R.

Then the Fredholm Pfaffian of K is defined by the series expansion

Pf(J + K )L2(R,µ) := 1 +

∞∑
k=1

1
k!

∫
R

· · ·

∫
R

Pf
(
K (xi , x j )k

i, j=1

)
dµ⊗

k
(x1, . . . xk) , (4.5)
rovided that the series converges.
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Let the measure ν on (Conf(R),Σ ) be a Pfaffian point process on (R,B(R), µ) with matrix
ernel K , and let X denote a random configuration with law ν (see Section 3.1 for definitions
f these objects). For any measurable function f : R → C, [44, Theorem 8.2] gives the identity

Eν

[∏
x∈X

(1 + f (x))

]
= Pf(J + K )L2(R, f µ) , (4.6)

whenever both sides converge absolutely. This identity can be applied to obtain a Fredholm
Pfaffian representation for F1. Consider the GOE point process, which we recall is a Pfaffian
point process on (R,B(R), µ), where µ denotes the Lebesgue measure. Recall also that we
write (a1 > a2 > . . . ) to denote the random configuration of GOE points. For any s ∈ R and

≥ 0, taking f (x) := e−v1(x≥s)
− 1 in (4.6) yields

F1(s, v) = EGOE

[∏
ai

e−v1(ai ≥s)

]
= Pf(J + K GOE)L2(R, f µ) , (4.7)

rovided that the right-hand side above converges absolutely. The absolute convergence is
hown in the proof of Theorem 4.4.

heorem 4.4. Let F1(s, v) denote the distribution function of the largest particle of the thinned
OE point process a1(γ ) with parameter γ := 1 − e−v , where s ∈ R and v ≥ 0. Then we have

F1(s, v) = Pf(J − γ K GOE)L2([s,∞),µ) = F1(s, v). (4.8)

here µ denotes the Lebesgue measure.

roof. We begin by demonstrating the absolute convergence of the right-hand side of (4.7),
hich may be expanded as

1 +

∞∑
k=1

1
k!

∫
R

· · ·

∫
R

Pf
(
K GOE(xi , x j )

)k
i, j=1

k∏
i=1

(
e−v1(xi ≥s)

− 1
)

dµ⊗
k
(x1, . . . , xk)

= 1 +

∞∑
k=1

(
e−v

− 1
)k

k!

∫
[s,∞)

· · ·

∫
[s,∞)

Pf
(
K GOE(xi , x j )

)k
i, j=1 dµ⊗

k
(x1, . . . , xk) . (4.9)

bserve that since v ≥ 0,
⏐⏐e−v

− 1
⏐⏐ ≤ 1. This along with the bound on

⏐⏐Pf
(
K GOE(xi , x j )

)k
i, j=1

⏐⏐
iven in [36, Proposition 4.1(i)] allows us to compute

∞∑
k=1

⏐⏐(e−v
− 1

)k⏐⏐
k!

∫
[s,∞)

· · ·

∫
[s,∞)

⏐⏐Pf
(
K GOE(xi , x j )

)k
i, j=1

⏐⏐ dµ⊗
k
(x1, . . . , xk)

≤

∞∑
k=1

kk/2Ck

k!

(∫
∞

s
e−x3/2

i /31{xi ≥0} + (1 − x)21{x<0} dµ(x)
)k

≤

∞∑
k=1

kk/2Ck
s

k!
< ∞ , (4.10)

here C is a positive constant, Cs is a positive constant depending only on s, and the above
um converges due to Stirling’s formula. This establishes the Fredholm Pfaffian representation
4.7) of F (s, v).
1
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Let us return to the expansion of the Fredholm Pfaffian in (4.9). From the definition of Pf(A),
e see that scaling every entry of the matrix A by some constant c and taking the Pfaffian is

quivalent to ckPf(A), where A is a 2k × 2k matrix. Thus, from (4.9), we find

F1(s, v) = 1 +

∞∑
k=1

(−1)k

k!

∫
[s,∞)

· · ·

∫
[s,∞)

Pf
(
γ K GOE(xi , x j )

)k
i, j=1 dµ⊗

k
(x1, . . . , xk)

= Pf(J − γ K GOE)L2([s,∞),µ) . (4.11)

Now, recall from the first paragraph of Section 4.1 that the thinned GOE point process is
Pfaffian with correlation kernel γ K GOE. Thus, the gap probability for the thinned GOE point
process is

Pf(J − γ K GOE)L2([s,∞),µ) = P(a1(γ ) < s) =: F1(s, v).

Substituting this into (4.11) yields (4.8) . □

4.3. Proofs of Theorems 1.7 and 1.10

We are now ready to prove Theorem 1.7. Assuming Lemma 1.9, we will then be able to
prove Theorem 1.10 as well. Lemma 1.9 is proved in Section 4.4.

Proof of Theorem 1.7. Eq. (1.20) follows immediately from (4.2), Proposition 4.2, and
Theorem 4.4. □

Proof of Theorem 1.10. Fix any δ ∈ (0, 2/5). Take v to be v̄ (so that γ = 1 − e−v̄ and γ2 is
qual to γ̄ ) in (1.20) . This yields

F1

(
−s,

1
2

s3/2−δ

)
=

√
F2(−s, s3/2−δ)

√
1 +

cosh µ(−s, γ̄ ) −
√

γ̄ sinh µ(−s, γ̄ ) − 1
2 − γ

.

(4.12)

Eq. (4.4) gives the following bound as s → ∞:

√
F2(−s, s3/2−δ) ≤

√
exp

(
−

2
3π

s3−δ + O
(

s3−
13δ
11

))
= exp

(
−

1
3π

s3−δ
+ O

(
s3−

13δ
11

))
.

(4.13)

ince γ̄ ∈ (0, 1] and 2 − γ ∈ [1, 2), the second term on the right-hand side of (4.12) may be
crudely bounded above as s → ∞ by√

C1 + C2 exp (|µ(−s, γ̄ )|),

or some positive constants C1 and C2 (independent of s and δ). From Lemma 1.9 and the
above display, we find that as s → ∞,√

1 +
cosh µ(−s, γ̄ ) −

√
γ̄ sinh µ(−s, γ̄ ) − 1

2 − γ
= o(s3−δ) . (4.14)

ubstituting the bounds given by (4.13) and (4.14) into (4.12) yields (1.31). □
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4.4. Proof of Lemma 1.9

The proof of Lemma 1.9 is given at the end of this subsection.
Throughout this subsection, as in the statement of Lemma 1.9, we take δ ∈ (0, 2/5) fixed.

he parameter s is taken to be positive, and we define v̄ := v̄(s, δ) and γ̄ := γ̄ (s, δ) as in (1.22).
ote that γ̄ = 1 − e−2v̄ . For some fixed constants x0 > 0 and ζ0 ∈ (0, 2

√
2/3) to be specified

ater, we will consider upper bounds on uAS(x; γ̄ ) over each of the following intervals of x :

1. [−s, −( 2
√

2
3 − ζ0)−2/3s1−

2
3 δ].

2.
(
−( 2

√
2

3 − ζ0)−2/3s1−
2
3 δ, −( 2

√
2

3 )−2/3s1−
2
3 δ
)

=: I0

3.
[
−( 2

√
2

3 )−2/3s1−
2
3 δ, −x0

)
4. [−x0, ∞),

Consider ℵ̄ := ℵ(x, γ̄ ) (where ℵ(x, γ ) was defined for general γ ∈ [0, 1) in (1.24)). The
interval (1) corresponds to ℵ̄ ∈ Ī1(ζ0) := [s−δ, 2

√
2

3 − ζ0], which we recall from Section 1.3 is
ontained in the regular Boutroux region I1(ζ0) := (0, 2

√
2

3 − ζ0). [16, Theorem 1.10] gives an
xpansion for uAS(x; γ ) (for general x and γ such that ℵ ∈ I1(ζ0)) in terms of Jacobi theta
unctions and elliptic integrals. In [21, Section 6], the authors manipulate the formula from [16,
heorem 1.10] into a form that is more amenable to obtaining the estimates that they seek. In
ur case, we only seek crude upper bounds on uAS, for which [16, Theorem 1.10] and the work
f [21, Section 6] can be combined to obtain an upper bound of order (−x)1/2 on uAS(x; γ )
niformly over ℵ ∈ I1(ζ0).

emma 4.5. For some constant ζ0 ∈ (0, 2
√

2/3), there exist constants S0 > 0 and C > 0
uch that for all s ≥ S0 and for all ℵ ∈ I1(ζ0), we have

|uAS(x; γ̄ )| ≤ C(−x)1/2 . (4.15)

roof. In what follows, we rely heavily on the notation set forth at the start of [21,
ection 6.1]— since this notation is used only in the present proof, which is rather short, we do
ot redefine their notation here. From equations 6.1 and 6.2 of [21]6 (which is a reformulation
f Equations 1.25 and 1.26 of [16]), we see that it suffices to find appropriate bounds on

1 − κ
√

1 + κ2
, and cd

(
2(−x)3/2V K (κ̃) , κ̃

)
, (4.16)

here we define κ̃ :=
1−κ
1+κ

. It follows from [21, Equations 6.3, 6.4] that κ(ℵ) is bounded
niformly over bounded regions of ℵ, and so 1−κ√

1+κ2
is bounded uniformly over ℵ ∈ I1(ζ0).

Next, [21, Equation 6.9] implies that there exist r0 ∈ [0, 1) and C1 > 0 such that for all
≤ r0,

|cd(z, r )| ≤ 1 + C1r2 . (4.17)

t is shown in the proof of Lemma 6.3 of [21] that κ̃ goes to zero as ℵ goes to zero, and so
here exists ζ0 sufficiently close to 2

√
2/3 such that for all ℵ ∈ (0, 2

√
2

3 − ζ0], we have κ̃ ≤ r0.

6 While [21, Proposition 6.1] is stated for ζ ∈ (0,
√

2/3), it is written in a footnote that the result holds for all
ζ ∈ (0, 2

√
2/3), simply because [16, Equation 1.26] holds for this wider range of ζ , and [21, Equation 6.1,6.2] is

a reformulation of [16, Equations 1.25, 1.26].
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Then from (4.17), we have⏐⏐cd
(
2(−x)3/2V K (κ̃) , κ̃

)⏐⏐ ≤ C2,

or some C2 > 0. Thus, both terms in (4.16) are bounded uniformly over ℵ ∈ I1(ζ0). Eq. (4.15)
hen follows from [21, Proposition 6.1]. □

Taking ζ0 as in Lemma 4.5, it follows from (4.15) that⏐⏐⏐⏐ ∫ −( 2
√

2
3 −ζ0)−2/3s1−

2
3 δ

−s
uAS(x; γ̄ ) dx

⏐⏐⏐⏐ =

⏐⏐⏐⏐ ∫
ℵ̄∈ Ī1(ζ0)

uAS(x; γ̄ ) dx
⏐⏐⏐⏐ ≤ C1s3/2 , (4.18)

or some positive constant C1.
Interval (2) corresponds to ℵ̄ in the Stokes region ( 2

√
2

3 − ζ, 2
√

2
3 ), defined in Section 1.3.

ince I0 has length of order s1−
2
3 δ , Eq. (1.27) of Conjecture 1 implies that∫

I0

|uAS(x; γ̄ )| dx =

∫
ℵ̄∈( 2

√
2

3 −ζ, 2
√

2
3 )

|uAS(x; γ̄ )| dx = o(s3−δ) . (4.19)

Interval (3) corresponds to ℵ̄ ∈ Ī2 := [ 2
√

2
3 , x−3/2

0 s
3
2 −δ), which we recall from Section 1.3

s contained in the Hastings–McLeod region I2 := [ 2
√

2
3 , ∞). Over this region, we have [16,

heorem 1.12], reformulated below as Proposition 4.6.

roposition 4.6 ([16, Theorem 1.12]7). There exist positive constants x0, v0, and c such that
or all −x ≥ x0, v := − log(1 − γ ) ≥ v0, and ℵ ∈ I2, we have

uAS(x; γ̄ ) = −

√
−

x
2

(
1 −

e
2
3
√

2(−x)−3/2
−v

π (−x)3/425/4 + J2(x, s)
)

, (4.20)

here |J2(x, s)| ≤ c(−x)−3/2.

Take γ = γ̄ in Proposition 4.6 so that v = 2v̄ (where v̄ was defined at the start of this

ubsection), and let x0 be as in the proposition. Consider S0 := S0(δ) such that S
1−

2
3 δ

0 > x0 and

S
3
2 −δ

0 ≥ v0. Then for any s ≥ S0 and x in interval (3) (equivalently, ℵ̄ ∈ Ī2), we have −x ≥ x0

and 2v̄ ≥ v0. Thus, the hypotheses of the proposition are satisfied, and so there exists a constant
:= C(δ) > 0 (independent of the choice of ℵ̄ ∈ Ī2) such that |uAS(x; γ̄ )| ≤ C(−x)1/2. Thus,

here exists a constant C2 := C2(δ) > 0 such that⏐⏐⏐⏐ ∫ −x0

−( 2
√

2
3 )−2/3s1−

2
3 δ

uAS(x; γ̄ )
⏐⏐⏐⏐ =

⏐⏐⏐⏐ ∫
ℵ̄∈ Ī2

uAS(x; γ̄ )
⏐⏐⏐⏐ ≤ C2s

3
2 −δ . (4.21)

Finally, consider interval (4). For any fixed x0, the integral of uAS(x; γ̄ ) over x in interval
4) evaluates to a constant due to the exponential decay in (1.19). That is, there exists a positive

7 It may be helpful to match the notation of [16] with ours. We have taken the parameter f2 of [16] to be
. For any γ ∈ [0, 1), the function u(x |s) := u(x |(s1, s2, s3)) of [16] is equal to uAS(x; γ ) in the special case
= (−i

√
γ , 0, i

√
γ ), as stated in [16, Remark 1.6]. The quantity ε of [16] is defined as sgn(ℑs1), which is equal

o −1 in our case. The parameter v of [16] is also written here as v. The parameter ℵ of [16] is defined in [16,
quation 1.21] as v(−x)−3/2, which, for v = − log(1 − γ ), matches our definition of ℵ.
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constant C3 such that⏐⏐⏐⏐∫ ∞

−x0

uAS(x; γ̄ ) dx
⏐⏐⏐⏐ = C3 . (4.22)

e are now ready to prove Lemma 1.9.

roof of Lemma 1.9. Eq. (1.29) follows immediately from (4.18), (4.21), and (4.22).
q. (1.30) follows from the additional input (4.19). □

. Proof of Theorem 1.11

The proof of Theorem 1.11 was sketched in Section 1.2, starting from (1.17). Here, we
ive a complete proof. The following corollary follows from Theorem 4.4 and a less precise
ormulation of [17, Theorem 1.4], which states that logF1(−s, v) is given by the right-hand
ide of (5.1) (and thus, by Theorem 4.4, the same is true for F1(−s, v)).

orollary 5.1 ([17, Theorem 1.4]). Fix γ ∈ [0, 1) and define v := − log(1 − γ ) ∈ [0, ∞).
here exist positive constants S0 := S0(γ ) such that for all s ≥ S0, we have

log F1(−s, v) = −
2

3π
vs3/2

+
v2

2π2 log(8s3/2) + O(1) . (5.1)

Proof of Theorem 1.11. Fix η > 0, c > 0, and δ ∈ (0, 2/5). For brevity, we write A to denote
the event

A :=
{
χGOE[−s, ∞) − E[χGOE([−s, ∞))] ≤ −cs3/2} .

For any λ > 0, taking f (x) = e−λx in Markov’s inequality gives the upper-bound

P(A) ≤ exp
(
−cλs3/2

+ λE
[
χGOE([−s, ∞))

])
E
[
exp

(
−λχGOE([−s, ∞))

)]
= exp

(
−cλs3/2

+
2

3π
λs3/2

+ λD1(s)
)

F1(−s, λ) , (5.2)

here (5.2) follows from the substitution of (1.16). Taking λ = 2η/c and substituting (5.1)
nto (5.2) yields

P(A) ≤ exp
(
−2ηs3/2

+ O(log s)
)

≤ exp
(
−ηs3/2) ,

here the last inequality holds for all s sufficiently large (depending on η and c). Thus, we
ave (1.32).

Now, assume Conjecture 1. Then taking λ =
1
2 s

3
2 −δ in (5.2) gives

P(A) ≤ exp
(

−
1
2

cs3−δ
+

1
3π

s3−δ
+

1
2

s
3
2 −δ D1(s)

)
F1

(
−s,

1
2

s
3
2 −δ

)
.

ubstituting the bound of Theorem 1.10 into the above yields equation (1.33). □

. Proof of Theorem 1.12

We now prove Theorem 1.12. Our method of proof necessarily differs from the GUE case
f [21], which benefits from the Airy kernel being a locally admissible and good trace-class
388
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operator (see [4, Section 4.2]). For such kernels, on any compact set D ⊂ R, the point process
can be expressed as the following sum:

χAi(D)
(d)
=

∞∑
i=1

X i ,

where the X i are independent Bernoulli random variables satisfying P(X i = 1) = 1 − P(X i =

0) = λD
i . Here, λD

i are the eigenvalues of the operator 1(D)K Ai1(D). An application of
Bennett’s concentration inequality yields the desired upper large deviations bound on χAi.

Pfaffian point processes possess matrix-valued kernels (see Section 3), and while [31]
describes a such class of kernels whose corresponding Pfaffian point processes can be expressed
as a sum of Bernoulli random variables, no such result is known for the GOE point process.
Instead, we estimate χGOE on intervals by carefully analyzing the closest GOE points to the
boundary of the interval. The result is the exponential upper bound (1.34), which suffices to
establish (2.10), which in turn gives the lower bound (1.11) on the half-space KPZ tail.

Proof of Theorem 1.12. Throughout this proof, we write χ := χGOE for brevity. Fix c > 0 and
δ ∈ (0, 2/5). In what follows, we will write ĉ := ĉ(c) to denote a positive constant depending
only on the parameter c whose value may change from line to line. We first consider Bk(ℓ)
for k ≥ 2.

As usual, let (a1 > a2 > . . . ) denote the GOE point process, and let (λ1 < λ2 < . . . ) denote
the eigenvalues of the Airy operator. Define

m1 := sup{m : am ≥ −(k − 1)ℓ} , m2 := sup{m : am ≥ −kℓ} , and
k1 := sup{n : −λn ≥ −(k − 1)ℓ} , k2 := sup{n : −λn ≥ −kℓ} .

Note that χ (Bk(ℓ)) = m2 − m1. Theorem 1.6 gives us

E [χ (Bk(ℓ))] =
2

3π
(k3/2

− (k − 1)3/2)ℓ3/2
+ f1 , (6.1)

here f1 := f1(k, ℓ) = (D1(kℓ)− D1((k−1)ℓ)); note that f1 is bounded in k and ℓ. By Taylor’s
heorem, we have

k3/2
− (k − 1)3/2

=
3
2

(k − 1)1/2
+ Rk , (6.2)

here 0 < Rk ≤
3
4 . By Corollary 3.5, we have

E[χ (Bk(ℓ))] = k2 − k1 + f2 , (6.3)

where f2 := f2(k, ℓ) is bounded in k and ℓ. Define the positive constant

ck := ck(c) = c
(

1
π

(k − 1)1/2
+

2
3π

Rk

)−1

,

which is bounded above uniformly in k, and satisfies

ck ≥ ĉk−1/2 . (6.4)

Then substituting (6.2) and (6.3) into (6.1) yields

cℓ3/2
= ck(k2 − k1) − f3 ,

where f3 := f3(k, ℓ) is bounded in k and ℓ. The above display along with the relation
χ (Bk(ℓ)) = m2 − m1 gives{

χ (B (ℓ)) − E χ (B (ℓ)) ≥ cℓ3/2}
= {m − m ≥ (1 + c )(k − k ) + f } . (6.5)
k [ k ] 2 1 k 2 1 3
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It follows that the event
{
χ (Bk(ℓ)) − E [χ (Bk(ℓ))] ≥ cℓ3/2

}
is contained in the event{

m2 ≥ k2 +
ck

2
(k2 − k1) + f3

}
∪

{
m1 ≤ k1 −

ck

2
(k2 − k1)

}
. (6.6)

he next two claims provide an upper-bound on each of the events in the above union.

laim 6.1. There exist positive constants c̄ := c̄(c), κ := κ(c, δ), and ℓ0 := ℓ0(c, δ) such that
or all ℓ ≥ ℓ0, we have

P
(

m2 ≥ k2 +
ck

2
(k2 − k1) + f3

)
≤ κ exp

(
−κ (c̄ℓ)1−δ

)
. (6.7)

roof of Claim 6.1. Since −am2 ≤ kℓ, Theorem 1.5 yields

(1 − ε)λm2 − kℓ ≤ CGOE
ε ,

or any ε ∈ (0, 1). Let k3 := k2 +
ck
2 (k2 − k1) + f3. Since λi < λ j if and only if i < j , the

revious display gives us

{m2 ≥ k3} ⊆ {(1 − ε)λk3 − kℓ ≤ CGOE
ε } , (6.8)

or any ε ∈ (0, 1). Corollary 3.5 allows us to write

k1 =
2

3π
((k − 1)ℓ)3/2

+ C1((k − 1)ℓ) , and (6.9)

k2 =
2

3π
(kℓ)3/2

+ C2(kℓ) , (6.10)

here supx>0{|C1(x)| , |C2(x)|} < 1. Then, from Proposition 3.4 and the definition of k3, we
ompute

λk3 =

(
(kℓ)3/2

+
ck

2

(
(kℓ)3/2

− ((k − 1)ℓ)3/2)
+ f4

)2/3

= (kℓ)
(

1 +
ck

2

(
1 −

(k − 1
k

)3/2
)

+ (kℓ)−3/2 f4

)2/3

, (6.11)

here f4 := f4(k, ℓ) is bounded in k and ℓ. Since the function g(x) := x2/3 is an increasing
unction in x , (6.11) gives us

λk3 ≥ (kℓ)
(

1 +
ck

4

)2/3
, (6.12)

or all ℓ ≥ 1 (and recall that we have fixed k ≥ 2). Substituting (6.12) into (6.8), we find

{m2 ≥ k3} ⊆

{
CGOE

ε ≥ kℓ
(

(1 − ε)
(

1 +
ck

4

)2/3
− 1

)}
. (6.13)

We now show that there exists some ε ∈ (0, 1) such that k
(

(1 − ε)
(

1 +
ck
4

)2/3
− 1

)
can be

ounded below by a positive constant c̄ := c̄(c) uniformly in k ∈ Z≥2. Define

ĉk := ĉk(ε) =

(
(1 − ε)

(
1 +

ck

4

)2/3
− 1

)
.

t is clear that from (6.4) that for any fixed k, there exists ε > 0 such that ĉk > 0. Thus, we
eed only consider k arbitrarily large. We show that there exists a positive constant K := K (c)
uch that for all k ≥ K (c), there exists ε := ε(k, c) > 0 such that ĉ (ε) = k−1. Towards this
k
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end, using (6.4), we find the lower-bound

ε = 1 −
1 + ĉk(

1 +
ck
4

)2/3 ≥ 1 −
1 + ĉk(

1 + ĉ(k − 1)−1/2
)2/3 . (6.14)

hat ε < 1 is trivial. Thus, it suffices to show that there exists a positive constant K := K (c)
such that

k−1 <
(
1 + ĉ(k − 1)−1/2)2/3

− 1 , (6.15)

or all k ≥ K (for then it will follow that there exists ε(k, c) ∈ (0, 1) such that ĉk = k−1, for
all k ≥ K ). Let K := K (c) be large enough such that ĉ(k − 1)−1/2 < 1 for all k ≥ K . Then,
by Taylor’s theorem, we have(

1 + ĉ(k − 1)−1/2)2/3
− 1 =

2
3

ĉ(k − 1)−1/2
+ O(k−1) ≥ ĉ(k − 1)−1/2 , (6.16)

here the last inequality holds for K := K (c) large enough and all k ≥ K (and the ĉ on the
ight-most side differs from the other ĉ). Now, choose K large enough such that, for all k ≥ K ,
e have k−1 < ĉ(k − 1)−1/2. Then, from (6.16), it follows that (6.15) holds. Thus, we may

ake

c̄ = min{1, min
k≤K

kck} ,

hich depends only on c.
Now, let k0 := k0(c) ∈ Z≥1 and ε0 := ε0(c) ∈ (0, 1) be such that c̄ = ck0 (ε0). Thus, from

6.13), we have

{m2 ≥ k3} ⊆ {CGOE
ε0

≥ c̄} . (6.17)

q. (6.17) and Theorem 1.5 then give the final result: there exist positive constants κ := κ(c, δ)
nd L0 := L0(c, δ) such that for all ℓ ≥ ℓ0, we have

P
(

m2 ≥ k2 +
ck

2
(k2 − k1)

)
≤ P

(
CGOE

ε0
≥ c̄ℓ

)
≤ κ exp

(
−κ (c̄ℓ)1−δ

)
.

This concludes the proof of Claim 6.1. □

Claim 6.2. For any η > 0, there exists a positive constant L̄0 := L̄0(c, η) such that for all
ℓ ≥ L̄0, we have

P
(

m1 ≤ k1 −
ck

2
(k2 − k1)

)
≤ exp

(
−ηℓ3/2) . (6.18)

roof of Claim 6.2. Fix η > 0. Let the left-hand side of (6.18) be denoted by P . By definition
f m1, we have m1 = χ (−(k − 1)ℓ, ∞). Corollary 3.5 gives the expression

m1 − k1 = χ (−(k − 1)ℓ, ∞) − E [χ (−(k − 1)ℓ, ∞)] + g1 ,

here g1 := g1(k, ℓ) is bounded in k and ℓ. This expression allows us to write P as

P = P
(
χ (−(k − 1)ℓ, ∞) − E [χ (−(k − 1)ℓ, ∞)] ≤ −

ck

2
(k2 − k1) + g1

)
. (6.19)

rom Eqs. (6.9), (6.10), and (6.2), we may write

k2 − k1 =
2
(

3
(k − 1)1/2

+ Rk

)
ℓ3/2

+ g2 ,

3π 2
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where g2 := g2(k, ℓ) is bounded in k and ℓ. The above along with (6.4) yield the bound

−
ck

2
(k2 − k1) + g1 ≤ −ĉk−1/2

(3
2

(k − 1)1/2
+ Rk

)
ℓ3/2

+ g3 ≤ −C̄ℓ3/2 , (6.20)

here g3 := g3(k, ℓ) is bounded in k and ℓ and C̄ := C̄(c) is a positive constant; and the last
nequality holds for all ℓ ≥ L̄0, where L̄0 := L̄0(c) is sufficiently large. Substituting (6.20) into
he right-hand side of (6.19) yields

P ≤ P
(
χ (−(k − 1)ℓ, ∞) − E [χ (−(k − 1)ℓ, ∞)] ≤ −C̄ℓ3/2) . (6.21)

e may now apply Eq. (1.32) of Theorem 1.11: in the notation of this theorem, we take c to
e C̄ , s to be ℓ, and η to be the same η here. Then there exists a positive constant L̄0 := L̄0(c, η)
uch that for all ℓ ≥ L̄0, we have P ≤ exp

(
−ηℓ3/2

)
as desired. This concludes the proof of

laim 6.2. □

We are now ready to conclude the proof of Theorem 1.12. Define

P := P
(
χ (Bk(ℓ)) − E [χ (Bk(ℓ))] ≥ cℓ3/2) .

rom (6.6), we have

P ≤ P
(

m2 ≥ k2 +
ck

2
(k2 − k1) + f3

)
+ P

(
m1 ≤ k1 −

ck

2
(k2 − k1)

)
.

ubstituting the bounds obtained in (6.7) and (6.18) gives

P ≤ κ exp
(
−κ(c̄ℓ)1−δ

)
+ exp

(
−ηℓ3/2)

≤ exp
(
−Cℓ1−δ

)
,

where the first inequality holds for any fixed η > 0 and all ℓ ≥ L0, where L0 := L0(c, δ, η) is
reater than or equal to max{ℓ0, L̄0}. Fixing η, the second inequality above holds for a (possibly
arger) L0 and another positive constant C := C(c, δ). This concludes the proof of the result
or k ≥ 2.

Now, if k = 1, take m2 defined as in the k ≥ 2 case. Then (6.5) holds with m1 = 0, i.e., we
ave {

χ (Bk(ℓ)) − E [χ (Bk(ℓ))] ≥ cℓ3/2}
= {χ (Bk(ℓ)) − E [χ (Bk(ℓ))] ≥ ckE [χ (Bk(ℓ))] + f3}

= {m2 ≥ (1 + ck)(k2 − k1) + f3}. (6.22)

Then (6.7) finishes the proof for the k = 1 case. □

7. Proof of Proposition 2.2

In this section, we prove Proposition 2.2, thus completing our proof of Theorem 1.4. Here,
we follow closely the method of [21, Section 5]; indeed, many of the computations done there
are adapted here to our case.

Before proceeding, we recall a result describing the tail behavior of a1, which follows the
GOE Tracy–Widom distribution (see [51]). The following proposition is a much simplified
version of a result of [6], where the authors extract precise asymptotics up to the third order
(prior, the asymptotic behavior had been known by studying the asymptotics of the solutions
of the Painlevé II equation).

Proposition 7.1 ([6]). Let a1 denote the top particle in the GOE point process. Then

P(a1 < −s) = exp
(

−
1

24
s3(1 + o(1))

)
. (7.1)
392



Y.H. Kim Stochastic Processes and their Applications 142 (2021) 365–406

W∑
f

L

P

H
d
T
c
o

C

7.1. Proof of the upper bound, Eqs. (2.11) and (2.12)

Recall that we defined in (2.9)

Js(x) :=
1
2

log(1 + exp(T 1/3(x + s))), and Is(x) := exp(−Js(x))

e will establish an upper bound on EGOE
[∏

∞

k=1 Is(ak)
]

by deriving a lower bound on
∞

k=1 Js(ak). To this end, we denote Dk := (−λk − ak)+, where we write x+ := max{x, 0}

or any x ∈ R.

emma 7.2. Fix ε ∈ (0, 1/3). Define θ0 := ⌊2s3/2/3π⌋. There exist positive constants
S0 := S0(ε) and R such that for all s ≥ S0 and for all T ≥ 0,

∞∑
k=1

Js(ak) ≥
1
2

T 1/3

(
4s5/2

15π
(1 − 8ε) −

θ0∑
k=1

Dk − R

)
. (7.2)

roof. We compute
∞∑

k=1

Js(ak) =

∞∑
k=1

Js (−λk − Dk + (−λk − ak)−) ≥

∞∑
k=1

Js(−λk − Dk) , (7.3)

where the inequality comes from the fact that Js(x) is a monotonically increasing function.
We now divide the sum on the right-hand side of (7.3) into three ranges: [1, θ1], (θ1, θ2), and
[θ2, ∞), where we define

K := sup
n≥1

{|nR(n)|}, θ1 := ⌈4K⌉ , θ2 :=

⌈
2s3/2

3π
+

1
2

⌉
. (7.4)

ere, we recall R(n) from Proposition 3.4, and note that K < ∞. Note further that θ1 does not
epend on our choice of s, but θ2 does, and so we can choose s large enough so that θ1 < θ2.
hus, we take S0 large enough such that for all s ≥ S0, we have θ1 < θ2. The following two
laims establish appropriate lower-bounds on the sum of Js(−λk − Dk) over the first two ranges
f k.

laim 7.3. For all s ≥ 0,
θ1∑

k=1

Js(−λk − Dk) ≥
1
2

T 1/3

(
θ1s − θ1

(
3π (4K + 1)

2

)2/3

−

θ1∑
k=1

Dk

)
. (7.5)

Proof of Claim 7.3. Note that for any a ∈ R, we have log(1 + exp(a)) ≥ a. It follows that
Js(x) ≥

1
2 T 1/3(s + x). Using this and the fact that the λk increase in k, we have

θ1∑
k=1

Js(−λk − Dk) ≥
1
2

T 1/3
θ1∑

k=1

s − λk − Dk ≥
1
2

T 1/3

(
θ1(s − λθ1 ) −

θ1∑
k=1

Dk

)
. (7.6)

From Proposition 3.4,

λθ1 ≤

⎛⎝3π
(
θ1 −

1
4 +

K
θ1

)
2

⎞⎠2/3

.
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Since θ1 −
1
4 +

K
θ1

≤ 4K + 1, (7.5) follows. This concludes the proof of Claim 7.3. □

Claim 7.4. There exists a positive constant S0 := S0(ε) such that for all s ≥ S0,

θ2−1∑
k=θ1+1

Js(−λk − Dk) ≥
1
2

T 1/3

⎛⎝4s5/2

15π
(1 − 3ε) − (θ1 + 1)s −

θ2−1∑
k=θ1+1

Dk

⎞⎠ . (7.7)

roof of Claim 7.4. Using similar bounds as in (7.6), along with the fact that λk ≤ (3πk/2)2/3

for all k > θ1, we find
θ2−1∑

k=θ1+1

Js(−λk − Dk) ≥
1
2

T 1/3
θ2−1∑

k=θ1+1

(
s −

(
3πk

2

)2/3

− Dk

)
. (7.8)

We now bound the following sum with an integral, as the summands are decreasing in k:
θ2−1∑

k=θ1+1

(
s −

(
3πk

2

)2/3
)

≥

∫ θ2−1

θ1+1
s −

(
3π z

2

)2/3

dz

≥

∫ θ2−1

0
s −

(
3π z

2

)2/3

dz − (θ1 + 1)s

= (θ2 − 1)

(
s −

3
5

(
3π

2

)2/3

(θ2 − 1)2/3

)
− (θ1 + 1)s . (7.9)

ote that θ2 − 1 ≥
2s3/2

3π
−

1
2 , and thus for s ≥

( 3π
4ε

)2/3
, we have

(1 − ε)
2s3/2

3π
≤ θ2 − 1 ≤

2s3/2

3π
+ 1.

ubstituting this bound into (7.9) and then substituting into (7.8) leads to (7.7). This concludes
he proof of Claim 7.4. □

Returning to the proof of Lemma 7.2, we substitute the bounds given by (7.5), (7.7), and∑
∞

k=θ2
Js(−λk − Dk) ≥ 0 into (7.3) to obtain

∞∑
k=1

Js(ak) ≥
1
2

T 1/3

[
4s5/2

15π
(1 − 3ε) − θ1

(
3π (4K + 1)

2

)2/3

− s −

θ2−1∑
k=1

Dk

]
. (7.10)

ecalling θ1 := ⌈4K⌉, we note that θ1 (3π (4K + 1)/2)2/3 is a constant which can be replaced
y a large constant R > 0. Finally, for sufficiently large s ≥ S0, we have s ≤

4εs5/2

3π
, and

hus we may make this replacement in (7.10) to obtain (7.2). This completes the proof of
emma 7.2. □

roof of (2.11) and (2.12) in Proposition 2.2. From (7.2), we have

∞∏
k=1

Is(ak) = exp

(
−

∞∑
k=1

Js(ak)

)
≤ exp

(
−

1
2

T 1/3

(
4s5/2

15π
(1 − 8ε) −

θ0∑
k=1

Dk − R

))
,

(7.11)
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for all s ≥ S0 and for all T ≥ 0. Note that for S0 sufficiently large, we have

εsθ0 + R ≤
4s5/2

15π

(
5
2
ε +

15π R
4s5/2

)
<

4s5/2

15π
(3ε) (7.12)

or all s ≥ S0. Define Sθ0 :=
∑θ0

k=1 Dk . Then (7.11) and (7.12) yield

1
(
Sθ0 < εsθ0

) ∞∏
k=1

Is(ak) ≤ exp
(

−T 1/3 2s5/2

15π
(1 − 11ε)

)
. (7.13)

n the other hand, if Sθ0 ≥ εsθ0, then there exists at least one k ∈ [1, θ0]∩Z such that Dk > εs.
hus, {Sθ0 ≥ εsθ0} ⊂

⋃θ0
k=1{Dk ≥ εs}. It follows that

EGOE

[
∞∏

k=1

Is(ak)

]
= E

[
1
(
Sθ0 < εsθ0

) ∞∏
k=1

Is(ak)

]
+ E

[
1
(
Sθ0 ≥ εsθ0

) ∞∏
k=1

Is(ak)

]

≤ exp
(

−T 1/3 2s5/2

15π
(1 − 11ε)

)
+ E

[
1

(
θ0⋃

k=1

{Dk ≥ εs}

)
∞∏

k=1

Is(ak)

]
.

(7.14)

e split the indicator function as

1

(
θ0⋃

k=1

{Dk ≥ εs}

)
≤ 1

(
θ0⋃

k=1

{Dk ≥ εs} ∩ {a1 ≥ −(1 − ε)s}

)
+ 1 (a1 ≤ −(1 − ε)s) .

(7.15)

ince Is(ak) ≤ 1 for all k ∈ Z≥1, we have that when a1 ≥ −(1 − ε)s,
∞∏

k=1

Is(ak) ≤ Is(a1) ≤
1√

1 + exp
(
T 1/3(s + a1)

) ≤ exp
(

−
1
2
εsT 1/3

)
. (7.16)

ubstituting (7.15) and (7.16) into (7.14) gives

EGOE

[
∞∏

k=1

Is(ak)

]

≤ exp
(

−
2(1 − 11ε)

15π
T 1/3s5/2

)
+ exp

(
−

1
2
εsT 1/3

)
P

(
θ0⋃

k=1

{Dk ≥ εs}

)
+ P(a1 ≤ −(1 − ε)s) . (7.17)

sing (7.1), we have

P(a1 ≤ −(1 − ε)s) = exp
(

−(1 − ε)3 s3

24
(1 + o(1))

)
≤ exp

(
−

s3

24
(1 − Cε)

)
, (7.18)

or some constant C > 0 and all s sufficiently large. Now, taking C = max{C, 11} and using
emma 7.5, we obtain both (2.11) and (2.12). □

emma 7.5. Fix η > 0, ε ∈ (0, 1/3), and δ ∈ (0, 1/4). Then there exist positive constants
S0 := S0(η, ε, δ) > 0 and K1 := K1(ε, δ) > 0 such that the following holds for all s ≥ S0.

ivide the interval [−s, 0] into
⌈

2ε−1
⌉

+ 1 segments Q := [− jεs/2, −( j − 1)εs/2) for
i
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j = 1, . . . ,
⌈

2ε−1
⌉

+ 1. Denote the left and right endpoints of Q j by p j and q j respectively.
efine k j := #{k : −λk ≥ q j }, where (λ1 < λ2 < . . . ) denote the Airy operator eigenvalues.
hen (recalling θ0 = ⌊2s3/2/3π⌋), for all j ∈ {1, . . . ,

⌈
2ε−1

⌉
+ 1}, we have

P(ak j ≤ p j ) ≤ exp
(
−ηs3/2) , and (7.19)

P

(
θ0⋃

k=1

{Dk ≥ εs}

)
≤ exp

(
−ηs3/2) , (7.20)

nd, assuming Conjecture 1, we have

P(ak j ≤ p j ) ≤ exp
(
−K1s3−δ

)
, and (7.21)

P

(
θ0⋃

k=1

{Dk ≥ εs}

)
≤ exp

(
−K1s3−δ

)
. (7.22)

roof. If ak j ≤ p j , then

χGOE ([− jεs/2, ∞)) ≤ k j . (7.23)

Corollary 3.5 gives us the following expressions:

k j =
2

3π
( jεs/2)3/2

+ C1 ( jεs/2) , and (7.24)

E
[
χGOE ([− jεs/2, ∞))

]
=

2
3π

( jεs/2)3/2
+ C2 ( jεs/2) , (7.25)

here M ′
:= supx≥0{|C1(x)| , |C2(x)|} < ∞. It follows from (7.23)–(7.25) that if ak j ≤ p j ,

then

χGOE ([ jεs/2, ∞)) − E
[
χGOE ([− jεs/2, ∞))

]
≤ k j −

2
3π

( jεs/2)3/2
− C2 ( jεs/2)

=
(εs)3/2

3π
√

2

(
( j − 1)3/2

− j3/2)
+ C1 (( j − 1)εs/2) − C2 ( jεs/2)

≤ −M
√

j(εs)3/2
+ M ′ , (7.26)

here M > 0 is a constant extracted from the fact that

( j − 1)3/2
− j3/2

≤
√

j(( j − 1) − j) = −
√

j .

It follows that

P(ak j ≤ p j ) ≤ P
(
χGOE ([p j , ∞)

)
− E

[
χGOE ([p j , ∞)

)]
≤ −M

√
j(εs)3/2

+ M ′

)
.

Now, for sufficiently large S0, we have

−M
√

j(εs)3/2
+ M ′

≤ −
M
2

√
j(εs)3/2

for all j ∈ {1, . . . ,
⌈

2ε−1
⌉
+1} and for all s ≥ S0. Assuming Conjecture 1, we may now apply

Eq. (1.33) of Theorem 1.11: there exist S0(ε, δ) and K1 = K1(ε, δ) such that for all s ≥ S0,

P(ak j ≤ p j ) ≤ P
(

χGOE ([p j , ∞)
)
− E

[
χGOE ([p j , ∞)

)]
≤ −

M
2

√
j(εs)3/2

)
( 3−δ

)

≤ exp K1s . (7.27)
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This proves (7.21). Applying (1.32) instead of (1.33) yields (7.19) (for all s ≥ S0, for some
S0 := (S0(η, ε, δ)).

Towards showing (7.20) and (7.22), assume s is large enough so that λθ0 < s. We will now
how that

θ0⋃
k=1

{Dk ≥ εs} ⊂

⌈
2ε−1

⌉
+1⋃

j=1

{ak j ≤ p j } . (7.28)

irst, choose 1 ≤ k ≤ θ0 and assume that Dk ≥ εs. There exists 1 ≤ j ≤
⌈

2ε−1
⌉

+ 1 such
hat −λk ∈ Q j−1. The left boundary point of Q j−1 is q j , and since Dk = −λk − ak ≥ εs, we
ave ak ≤ −λk − εs. Since −λk ≥ q j , by definition of k j , we have k j ≥ k. Thus, ak ≥ ak j . It
ollows that

ak j ≤ ak ≤ −λk − εs ≤ −λk j −
εs
2

,

here the last inequality uses the fact that λk j , λk ∈ Q j−1, and thus 0 ≤ λk j − λk ≤ εs/2.
Hence, the distance between ak j and −λk j is greater than or equal to εs/2, from which it
ollows that ak j ≤ p j . This establishes (7.28).

Assuming Conjecture 1, we may combine (7.21) and (7.28) to obtain

P

(
θ0⋃

k=1

{Dk ≥ εs}

)
≤

⌈
2ε−1

⌉
+1∑

i=1

P
(
aki ≤ pi

)
≤
(⌈

2ε−1⌉
+ 1

)
exp

(
−K1s3−δ

)
. (7.29)

or S0 := S0(ε, δ) sufficiently large, we can modify the constant K1 := K1(ε, δ) to absorb the
onstant

⌈
2ε−1

⌉
+ 1. This establishes (7.22). On the other-hand, from (7.19) and (7.28), we

btain

P

(
θ0⋃

k=1

{Dk ≥ εs}

)
≤

⌈
2ε−1

⌉
+1∑

i=1

P
(
aki ≤ pi

)
≤
(⌈

2ε−1⌉
+ 1

)
exp

(
−η′s3/2) , (7.30)

or any η′ > 0. For any given η > 0, we may choose η′ sufficiently close to 0 and
S0 := S0(η, ε, δ) sufficiently large such that(⌈

2ε−1⌉
+ 1

)
exp

(
−η′s3/2)

≤ exp
(
−ηs3/2) .

hus, we have (7.20). This completes the proof of Lemma 7.5. □

.2. Proof of the lower bound, Eq. (2.10)

In this section we establish a lower bound on E[
∏

∞

k=1 Is(ak)] by deriving an upper bound
n
∑

∞

k=1 Js(ak). The result will lead us to (2.10) of Proposition 2.2, thus completing the proof
f Theorem 1.4. We begin with an algebraic inequality from [21].

emma 7.6 ([21, Lemma 5.6]). For all a > 27 and all x ≥
√

3a, we have

(a + x)2/3
≥ a2/3

+ x1/3 . (7.31)

The following lemma gives the needed upper-bound on
∑

∞

k=1 Js(ak) when a1 ≥ −s (see
laim 7.10).
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Lemma 7.7. Fix T0 > 0. There exist positive constants S0 and B := B(T0) such that for all
∈ (0, 1/3), for all s ≥ S0, and for all T > T0, we have

∞∑
k=1

Js(ak) ≤
1
2
LT,ε(s + CGOE

ε ) , (7.32)

here

LT,ε(x) := T 1/3
(

4x5/2

15π
(1 + 3ε) + 2x − B

)
+

x3/2

3(1 − ε)3/2

+

√
3
π

x3/4

(1 − ε)3/4 +
4

T π (1 − ε)3 .

roof. Recall from (2.9) that Js(x) is a monotonically increasing function, and recall from
1.14) that ak ≤ −(1 − ε)λk + CGOE

ε , for all k ∈ Z>0. It follows that
∞∑

k=1

Js(ak) ≤

∞∑
k=1

Js
(
−(1 − ε)λk + CGOE

ε

)
= ( Ĩ ) + ( Ĩ I ) + ( Ĩ I I ) , (7.33)

here ( Ĩ ), ( Ĩ I ), and ( Ĩ I I ) equal the sum of Js
(
−(1 − ε)λk + CGOE

ε

)
over all integers k in the

ntervals [1, θ ′

1], (θ ′

1, θ
′

2), and [θ ′

2, ∞) respectively, and we define

θ ′

1 :=

⌈
4 sup

n∈Z>0

n |R(n)|

⌉
, and

θ ′

2 :=

⌈
2(s + CGOE

ε )3/2

3π (1 − ε)3/2 +
1
2

⌉
,

here R(n) is defined as in Proposition 3.4. Since the λi are strictly decreasing in i , we have

Js
(
−(1 − ε)λk + CGOE

ε

)
≤ Js

(
−(1 − ε)λ1 + CGOE

ε

)
,

for all k ≥ 1. Using this and the inequality log(1 + exp(a)) ≤ a + π/2 for any a > 0, we
btain

( Ĩ ) ≤ θ ′

1 Js
(
−(1 − ε)λ1 + CGOE

ε

)
≤

1
2

(
θ ′

1T 1/3 (s − (1 − ε)λ1 + CGOE
ε

)
+

πθ ′

1

2

)
. (7.34)

erms ( Ĩ I ) and ( Ĩ I I ) are bounded in the following two claims.

laim 7.8. For all s > 0, we have

2( Ĩ I ) ≤ T 1/3

(
4(s + CGOE

ε )5/2

15π
(1 + 3ε) + (2 − θ ′

1)(s + CGOE
ε ) −

3
5

(
3π

2

)2/3 (
θ ′

1

)5/3

)

+
π (θ ′

2 − θ ′

1)
2

. (7.35)

roof of Claim 7.8. Recall the constant K, defined in (7.4). It follows that for k ∈ (θ ′

1, ∞),
e have

|R(k)| ≤
K

≤
K

′
≤ 1/4 .
k θ1
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w

a

Combining this with Proposition 3.4, we find

λk ≥

(
3π
(
k −

1
4 − |R(k)|

)
2

)2/3

≥

(
3π (k −

1
2 )

2

)2/3

. (7.36)

Using this, the inequality log(1 + exp(a)) ≤ a + π/2 for any a > 0, and the monotonicity of
Js(·), we obtain

( Ĩ I ) ≤
1
2

θ ′
2−1∑

k=θ ′
1+1

(
T 1/3 fs(k) +

π

2

)
, (7.37)

here

fs(z) := s + CGOE
ε − (1 − ε)

(
3π (z −

1
2 )

2

)2/3

.

Since fs(z) is a monotonically decreasing function of z, we may bound the sum in (7.37) with
an integral:

1
2

θ ′
2−1∑

k=θ ′
1+1

(
T 1/3 fs(k) +

π

2

)
≤

1
2

(
T 1/3

∫ θ ′
2

θ ′
1

fs(z) dz +
π (θ ′

2 − θ ′

1)
2

)
. (7.38)

We now compute∫ θ ′
2

1
2

fs(z) dz = (s + CGOE
ε )

(
θ ′

2 −
1
2

)
−

3(1 − ε)
5

(
3π

2

)2/3 (
θ ′

2 −
1
2

)5/3

≤ (s + CGOE
ε )

(
2(s + CGOE

ε )3/2

3π (1 − ε)3/2 +
3
2

)
−

3(1 − ε)
5

(
3π

2

)2/3 (2(s + CGOE
ε )3/2

3π (1 − ε)3/2

)5/3

=
4(s + CGOE

ε )5/2

15(1 − ε)3/2 +
3
2

(
s + CGOE

ε

)
≤

4(s + CGOE
ε )5/2

15
(1 + 3ε) +

3
2

(
s + CGOE

ε

)
, (7.39)

nd ∫ θ ′
1

1
2

fs(z) dz ≥ (s + CGOE
ε )

(
θ ′

1 −
1
2

)
−

∫ θ ′
1

1
2

(
3π
(
z −

1
2

)
2

)2/3

dz

= (s + CGOE
ε )

(
θ ′

1 −
1
2

)
−

3
5

(
3π

2

)2/3 (
θ ′

1

)5/3
. (7.40)

Substituting the bounds from (7.39) and (7.40) into (7.38) yields the upper bound on ( Ĩ I ) in
(7.35). This completes the proof of Claim 7.8. □

Claim 7.9. There exists a positive constant S0 > 0 such that for all s ≥ S0, we have

( Ĩ I I ) ≤
1
2

(√
3
π

(
s + CGOE

ε

)3/4

(1 − ε)3/4 +
4

T π (1 − ε)3

)
. (7.41)
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Proof of Claim 7.9. Using the inequality log(1 + z) ≤ z for all z ≥ 0, we obtain

Js
(
−(1 − ε)λk + CGOE

ε

)
≤

1
2

exp
(
T 1/3 (s − (1 − ε)λk + CGOE

ε

))
. (7.42)

ecalling the lower bound on λk from (7.36) and the definition of fs(z) from (7.37), we find

( Ĩ I I ) ≤
1
2

∞∑
k=θ ′

2

exp
(
T 1/3 fs(k)

)
. (7.43)

or all k ≥ θ ′

2, we have

s + CGOE
ε < (1 − ε)

(
3π (θ ′

2 −
1
2 )

2

)2/3

.

ince fs(z) is a monotonically decreasing function, we have fs(k) ≤ fs(θ ′

2) < 0 for all k ≥ θ ′

2.
hus, for all k > θ ′

2 +
√

3θ ′

2, S0 sufficiently large, and for all s ≥ S0, we may write

fs(k) < (1−ε)

⎛⎝(3π (θ ′

2 −
1
2 )

2

)2/3

−

(
3π (k −

1
2 )

2

)2/3
⎞⎠ ≤ −(1−ε)

(
3π (k − θ ′

2)
2

)1/3

,

(7.44)

here the last inequality uses (7.31) with

a :=
3π

2

(
θ ′

2 −
1
2

)
, x :=

3π

2
(k − θ ′

2)

(S0 need only be large enough so that a and x as above satisfy the conditions of Lemma 7.6
for all s ≥ S0). It follows from (7.44) and fs(k) < 0 that

exp
(
T 1/3 fs(k)

)
≤

⎧⎨⎩1, for k ∈
[
θ ′

2, θ
′

2 +
√

3θ ′

2

)
exp

(
−(1 − ε)

(
3π (k−θ ′

2)
2

)1/3
)

, for k ∈

[
θ ′

2 +
√

3θ ′, ∞
) , (7.45)

for S0 sufficiently large and for all s ≥ S0. From (7.43) and the above, we find that for S0

sufficiently large and all s ≥ S0,

2( Ĩ I I ) ≤

∑
k∈

[
θ ′

2,θ ′
2+

√
3θ ′

2

) exp
(
T 1/3 fs(k)

)
+

∑
k≥θ ′

2+

√
3θ ′

2

exp
(
T 1/3 fs(k)

)

≤ 1 +

√
3θ ′

2 +

∞∑
k=θ ′

2+
√

3θ ′

exp

(
−(1 − ε)

(
3π (k − θ ′

2)
2

)1/3
)

≤ 1 +

√
3θ ′

2 +

∫
∞

0
exp

(
−(1 − ε)T 1/3

(
3π z

2

)1/3
)

dz

= 1 +

√
3θ ′

2 +
4

T π (1 − ε)3

≤

√
3
π

(s + CGOE
ε )3/4

(1 − ε)3/4 +
4

T π (1 − ε)3 . (7.46)

his completes the proof of (7.41) of Claim 7.9. □
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We now return to the proof of Lemma 7.7. Define the bounded, positive constant

B ′
:=

3
5

(
3π

2

)2/3 (
θ ′

1

)5/3
+ (1 − ε)θ ′

1λ1 .

hen substituting the bounds given by (7.34), (7.35), and (7.41) into (7.33) yields

2
∞∑

k=1

Js(ak) ≤ T 1/3
(

4(s + CGOE
ε )5/2

15π
(1 + 3ε) + 2(s + CGOE

ε ) − B ′

)
+

πθ ′

2

2
(7.47)

+

√
3
π

(
s + CGOE

ε

)3/4

(1 − ε)3/4 +
4

T π (1 − ε)3 . (7.48)

ow,
πθ ′

2

2
≤

π

2

(
2

3π

(s + CGOE
ε )3/2

(1 − ε)3/2 +
3
2

)
=

(s + CGOE
ε )3/2

3(1 − ε)3/2 +
3π

4
. (7.49)

aking B := B ′
−

3π

4T 1/3
0

yields (7.32). □

Proof of (2.10) of Proposition 2.2. In what follows, we fix ε ∈ (0, 1/3), δ ∈ (0, 1/4), and
T0 > 0. We begin with two claims.

Claim 7.10. There exist κ := κ(ε, δ) > 0 and S0 = S0(ε, δ, T0) > 0 such that, for all s ≥ S0
and T > T0,

EGOE

[
1(a1 ≥ −s)

∞∏
k=1

I (ak)

]
≥
(
1 − 2κ exp

(
−κs1−2δ

))
exp

(
−

2T 1/3s5/2

15π
(1 + 9ε)

)
.

(7.50)

roof of Claim 7.10. Negating both sides of (7.32) and then exponentiating yields
∞∏

k=1

I (ak) ≥ exp
(

−
1
2
LT,ε(s + CGOE

ε )
)

.

ince LT,ε(x) is monotonically increasing, we may bound

EGOE

[
1(a1 ≥ −s)

∞∏
k=1

I (ak)

]
≥ P

(
a1 ≥ −s, CGOE

ε < s1−δ
)

exp
(

−
1
2
LT,ε(s + s1−δ)

)
.

(7.51)

ake S0 > 0 large enough so that for all s ≥ S0,

LT,ε(s + s1−δ) ≤ T 1/3 4s5/2

15π
(1 + 9ε) . (7.52)

rom Theorem 1.5, there exist κ := κ(ε, δ) and a (potentially larger) S0 such that. for all
s ≥ S0,

P(CGOE
ε ⟨s1−δ)⟩1 − κ exp(−κs1−2δ) .

Furthermore, for large enough S0, we find from (7.1) that for all s ≥ S0,

P(a1 < −s) ≤ exp
(

−
1

s3(1 + o(1))
)

≤ κ exp(−κs1−2δ) .
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Thus, for large enough S0, we have

P
(
a1 ≥ −s, CGOE

ε < s1−δ
)

≥ P(a1 ≥ −s)+P(CGOE
ε < s1−δ)−1 ≥ 1−2κ exp

(
−κs1−2δ

)
.

lugging this and (7.52) into (7.51) yields Eq. (7.50) of Claim 7.10. □

laim 7.11. There exist constants K2 := K2(T0) > 0 and S0 := S0(ε, δ, T0) > 0 such that for
ll s ≥ S0, we have

EGOE

[
1(a1 < −s)

∞∏
k=1

I (ak)

]
≥ exp

(
−K2s3) . (7.53)

roof of Claim 7.11. Define the parameter L :=
3

1−δ
, and note that L ∈ (3, 4]. Let J denote the

interval [−sL , −s). We seek an upper bound first on
∑

ak∈J Js(ak) and then on
∑

ak<−sL Js(ak).
ince Js(·) is monotonically increasing, we obtain the following upper bound by replacing all

he ak’s inside the interval J by the right endpoint s of the interval:∑
ak∈J

Js(ak) ≤ χGOE(J)Js(−s) =
1
2
χGOE(Jℓ) log 2 . (7.54)

ext, using Theorem 1.12, there exist C := C(ε, δ) and S0 := S0(ε) such that for all s ≥ S0,
e have

χGOE(J) ≤ E
[
χGOE(J)

]
+ εs3L/2 (7.55)

olds with probability greater than or equal to 1 − exp(−Cs3). In what follows, we will write
to denote a positive constant independent of ε ∈ (0, 1/3) and δ ∈ (0, 1/4) (but may depend

n T0) whose value may change from line to line. Then from Theorem 1.6, we have for large
nough s

E
[
χGOE(J)

]
=

2
3π

(s3L/2
− s3/2) + D1(sL ) − D1(s) ≤ Cs3L/2 . (7.56)

ubstituting this into (7.55), we may deduce that∑
ak∈J

J (ak) ≤ Cs3L/2 (7.57)

olds with probability greater than or equal to 1 − exp(−Cs3).
It remains to bound the sum

∑
ak<−sL Js(ak), which we now decompose into two sums:∑

ak<−sL

Js(ak) = (A) + (B), where (7.58)

(A) :=

∑
{k: ak<−sL , λk≤sL }

Js(ak), (B) :=

∑
{k: ak<−sL , λk>sL }

Js(ak) . (7.59)

sing the bound log(1 + a) ≤ a for all a ≥ 0 gives

Js(ak) ≤
1
2

exp
(
T 1/3 (s − sL))

≤
1
2

exp
(
−(1 − ε)T 1/3s3) ,

or ak ≤ −sL , S0 := S0(ε, δ) large enough, and all s ≥ S0. Corollary 3.5 shows

#{k : λk ≤ sL
} =

2
s3L/2

+ C1(sL ) ≤ Cs3L/2 .

3π
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Thus, for large enough S0, we have

(A) ≤
1
2

Cs3L/2 exp
(
−((1 − ε)T 1/3s3)

)
≤ s3. (7.60)

We now bound (B). From monotonicity and (1.14), we have Js(ak) ≤ Js(
−(1 − ε)λk + CGOE

ε

)
, where CGOE

ε is as defined in Theorem 1.5. We now employ Theorem 1.5,
taking s̃ and δ̃ as our variables instead of the s and δ in the notation of the theorem to avoid
confusion (though we take the ε in the statement of Theorem 1.5 to be the same as our ε here).
With s̃ := s3+

δ
2 and δ̃ :=

δ
2(3+δ/2) , Theorem 1.5 implies that there exist κ := κ(ε, δ) > 0 and

S0 := S0(ε, δ) > 0 such that for all s ≥ S0, we have

P
(

CGOE
ε < s3+

δ
2

)
≥ 1 − κ exp

(
−κs3) .

Now, for large enough S0, we have s + s3+
δ
2 ≤ (1 − ε)sL . Since sL < λk in (B), we have for

arge enough S0

P

⎛⎝(B) ≤

∑
λk>sL

Js
(
(1 − ε)(sL

− λk) − s
)⎞⎠ ≥ 1 − κ exp

(
−κs3) . (7.61)

he bounds in (7.60), (7.61), and (7.67) of Claim 7.12 (given below), as well as the bound
L/4 ≤ 3, we find that for S0 large enough,

P
(
(A) + (B) ≤ Cs3)

≥ 1 − κ exp
(
−κs3) (7.62)

ombining this bound with the bound in (7.57) yields

P(A) ≥ 1 − exp(−Cs3) − κ exp
(
−κs3) , (7.63)

here A :=
{∑

∞

k=1 Js(ak) ≤ Cs3
}
. We then obtain

EGOE

[
1(a1 < −s)

∞∏
k=1

I (ak)

]
≥ P ({a1 < −s} ∩ A) exp(−Cs3) . (7.64)

e finally estimate, for a constant K2 > 0 and for large enough S0,

P ({a1 ≤ −s} ∩ A) ≥ P(a1 ≤ −s) + P(A) − 1

≥ exp
(
−s3)

− exp(−Cs3) − κ exp
(
−κs3)

≥ exp
(
−C ′s3) , (7.65)

here the first inequality uses P(A ∩ B) ≥ P(A) + P(B) − 1 for any events A and B, and
he second inequality uses (7.1) and the lower bound in (7.63). Substituting (7.65) into (7.64)
ields (7.53). This concludes the proof of Claim 7.11. □

We may now complete the proof of (2.10) of Proposition 2.2 by substituting (7.50) and
7.53) into

EGOE

[
∞∏

k=1

I (ak)

]
= EGOE

[
1(a1 ≥ −s)

∞∏
k=1

I (ak)

]
+ EGOE

[
1(a1 < −s)

∞∏
k=1

I (ak)

]
. □

(7.66)
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Claim 7.12. Fix ε ∈ (0, 1/3), δ ∈ (0, 1/4) and T0 > 0. There exists a positive constant
S0 := S0(ε, δ) such that for all s ≥ S0, we have∑

λk>sL

Js
(
(1 − ε)(sL

− λk) − s
)

≤ Cs3L/4 . (7.67)

roof. For sufficiently large s, (3.15) implies that{
k : λk > sL}

⊆

{
k : k >

2
3π

(
sL)3/2

−
3
4

}
. (7.68)

his gives∑
λk>sL

Js
(
(1 − ε)(sL

− λk) − s
)

≤

∑
k> 2

3π
s3L/2−

3
4

Js
(
(1 − ε)(sL

− λk) − s
)
. (7.69)

To simplify the calculations that follow, we denote θ0 :=
2

3π
s3L/2

−
3
4 and θ ′

0 := θ0 +

√
2
π

s3L/4.
ote that for λk > θ0, we have (1 − ε)(sL

− λk) − s < 0 for sufficiently large S0. We then
se the fact that, for x ≤ −s, we have Js(x) ≤

1
2 log 2. This is the bound we take on Js(·) for

k ∈ [θ0, θ
′

0].
For k > θ ′

0, we recall the inequality log(1 + z) ≤ z for z ≥ 0, which gives

Js((1 − ε)(sL
− λk) − s) ≤

1
2

exp
(
(1 − ε)T 1/3(sL

− λk)
)

. (7.70)

efine k̄ := k −
1
4 + R(n) and k ′

:= k − θ0, and note that k̄ > θ0 for k > θ ′

0. Then Taylor’s
heorem yields

sL
− λk =

(
3π

2

(
θ0 +

3
4

))2/3

−

(
3π

2
k̄
)2/3

≤ −C(k ′)2/3 . (7.71)

ow, substituting the bound given in (7.71) into (7.70) yields

Js((1 − ε)(sL
− λk) − s) ≤

{
1
2 log 2 k ∈ [θ0, θ

′

0] ∩ Z
1
2 exp

(
−C(1 − ε)T 1/3(k ′)2/3

)
k ∈ (θ ′

0, ∞) ∩ Z
. (7.72)

rom this bound, we have∑
λk>sL

Js
(
(1 − ε)(sL

− λk) − s
)

≤
1
2

(θ ′

0 − θ0) log 2

+
1
2

∑
k′>θ ′

0−θ0

exp
(
−C(1 − ε)T 1/3(k ′)2/3) (7.73)

≤
1

√
2π

s3L/4 log 2 +
C

(1 − ε)T 1/3 (7.74)

≤ Cs3L/4 , (7.75)

here the second-to-last inequality follows by bounding the sum with an integral. This gives
he claim. □

eclaration of competing interest

The authors declare that they have no known competing financial interests or personal
elationships that could have appeared to influence the work reported in this paper.
404



Y.H. Kim Stochastic Processes and their Applications 142 (2021) 365–406

c
i
a
t
P
S
t
a
S
N

R

Acknowledgments

We are grateful to Ivan Corwin for suggesting this problem and for providing helpful
omments on numerous drafts of this paper, to Promit Ghosal for providing guidance and
nsight at several stages of this project, and to Thomas Bothner for enlightening discussions
bout the current literature on leading-order asymptotics for the Ablowitz–Segur solution to
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