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Abstract

We establish the first tight bound on the lower tail probability of the half-space KPZ equation with
Neumann boundary parameter A = —1/2 and narrow-wedge initial data. The lower bound demonstrates
a crossover between two regimes of super-exponential decay with exponents % and 3; the upper
bound demonstrates a crossover between regimes with exponents % and 3. Given a crude leading-order
asymptotic in the Stokes region for the Ablowitz—Segur solution to Painlevé Il (Definition 1.8), we
improve the upper bound to demonstrate the same crossover as the lower bound. We also establish
novel bounds on the large deviations of the GOE point process.
© 2021 Elsevier B.V. Allrights reserved.
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1. Introduction

The Kardar—Parisi—-Zhang (KPZ) equation is formally given by
1 1
drH(T, X) = S0 H(T, X) + = (9 H(T, X))* + £(T, X), (1.1

where T > 0, X € R, and & is Gaussian space-time white noise with covariance
E[&(T, X)E(S, Y)] = 8(T—S)8(X—Y). A physically relevant notion of solution to this equation
is given by the Cole—Hopf solution to the KPZ equation with narrow-wedge initial data

H(T, X) =1og Z(T, X), with Z(0, X) = §p(X), (1.2)
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where Z solves the (1 + 1)d stochastic heat equation (SHE) with multiplicative space—time
white noise

1
2
The well-definedness of (1.2) is given by the work of [38] establishing almost-sure positivity
of Z for a wide class of initial data (including delta initial data).

The KPZ equation is a paradigmatic model in a class of models, known as the KPZ
universality class, whose long-time limit is the KPZ fixed point. While this universality class
is not strictly defined, all models in this class should share specific salient features. The KPZ
equation itself has been shown to govern the long-time limits under weak asymmetric scaling
of many other models in the universality class. The notes and surveys [19,20,26,42,43,46,50],
and [56] provide further reading on various aspects of the KPZ universality class.

Just as in the full-space case, the half-space KPZ equation with Neumann boundary
conditions plays a significant role within the half-space KPZ universality class. Mathematical
analysis of the half-space analogues of models believed to lie in the KPZ universality class
began with the work of [7,30], both of which consider variants of half-space TASEP. For a
recent result relating to half-space TASEP, see [5]. Progress has been especially fruitful in the
case of ASEP. [23] established convergence of the height function of half-space ASEP under
weakly asymmetric scaling to the half-space KPZ equation with Neumann boundary parameter
A > 0. Following this result, [9] established an exact one-point distribution formula for half-
space ASEP with A = —1/2, and [40] was able to extend the work of [23] to show convergence
to the half-space KPZ equation for all real A. See, for instance, [8,10,32,34,36,54], and [11]
for additional results in the half-space KPZ universality class.

We now describe the half-space KPZ equation in detail.

orZ(T, X) = B)Z(Z(T, X))+ Z(T, X)§(T, X). (1.3)

1.1. The half-space KPZ equation with Neumann boundary conditions

This paper seeks to establish bounds on the lower tail of the half-space KPZ equation with
Neumann boundary condition, an object which we presently define.

Definition 1.1 (Mild Solution to the Half-space SHE, Half-space KPZ). We say Z (T, X) is a
mild solution to the SHE given in (1.3) on R with delta initial data at the origin and Robin
boundary condition with parameter A € R

ix Z(T, X) =AZ(T,0), VT >0, 1.4
X=0
if Z(T, -) is adapted to the filtration given by o (f’f ©, ), W||0,T]) and the following Duhamel-
form identity is satisfied

P(T, X) = /Do PRX,Y)Z(0,Y) dY (1.5)
0

T [ee)
+ / f PR (X, Y)Z(S,Y)E(S, Y) dWs(dY) (1.6)
0 0

for all T > 0 and X > 0. Here, the last integral is Itd with respect to the cylindrical Wiener
process W, and 2R is the heat kernel on [0, 00), i.e., the fundamental solution to the heat
equation on [0, 0o), satisfying the Robin boundary condition

I PR(X,Y) = AZ280,Y), VT >0, Y > 0. (1.7)
X=0
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The Hopf—Cole solution to the half-space KPZ equation with Neumann boundary param-
eter A is then defined to be H = log Z.

[40, Proposition 4.2] establishes the existence, uniqueness, and almost-sure positivity of
Z(T,-) for all A € R, which makes the Hopf—Cole solution to the half-space KPZ equation
with Neumann boundary condition A € R well-defined.

Our paper establishes tight bounds on the lower tail probability of H(T,0), that is, the
probability that Z(T, 0) is very close to 0, or equivalently, that H(T, 0) is very negative, for

the critical boundary parameter A = —1/2. Our result builds on the method used by [21] to
find analogous bounds for the full-space KPZ lower tail.
We now explain the choice of boundary parameter A = —1/2. For this particular boundary

parameter, [40, Theorem 1.1] established Tracy—Widom GOE fluctuations at the origin.

Proposition 1.2 ([40, Theorem 1.3]). Let H(T, X) be the solution to the half-space KPZ
equation with inhomogeneous Neumann boundary parameter A = —1/2 and narrow-wedge
initial data (which corresponds to &y initial data for the SHE). Then the following weak
convergence result holds

HQT,0)+ L

T1/3

Here, Fgog(s) is the Tracy—Widom GOE fluctuations [51], and 17 is the solution to the KPZ
equation after centering and re-scaling.

Tlim P(Yr <s)= Fgoe(s), where 17 := (1.8)

For other choices of A, establishing the limiting fluctuations of 77 has been elusive,
and thus establishing lower tail bounds in these regimes seems at the moment unfeasible.
[40, Conjecture 1.2] gives a conjecture establishing exactly two more regimes of distinct
fluctuations: A < —1/2, with Gaussian fluctuations, and A > —1/2, with Tracy—Widom
GSE distribution [51]. [40, Section 1.3] gives a heuristic argument for the Gaussianity of the
A < —1/2 regime; see also [41]. [13,28,34] provides strong evidence towards the conjectured
A > —1/2 regime, though we emphasize that no part of this conjecture has been rigorously
established.

On the other hand, for A = —1/2, we have access to Proposition 1.3, which provides the
starting point for our analysis.

Proposition 1.3 (/40]). Let H(T, X) denote the solution to the half-space KPZ equation on

[0, 00) with Neumann boundary parameter A = —1/2 and narrow-wedge initial data. Then
foru >0,
oo
Esug | exp [ —uexp | HRT 0)+1 =E H ! (1.9)
SHE p p , 12 GOE . .

k=1 \/1 + 4uexp (T'Pay)
Here, the (a; > ap > ...) form the GOE point process (defined in Section 3.1).
Taking u := 1 exp (T'/3s) in (1.9) and recalling 77 from (1.8), we obtain
= 1

1
Esue [exp (_Z exp (T1/3(TT + S))):| = Egog 1_[

k=1 \/1 + exp (Tl/3 (ax + s))

(1.10)
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Note that the function exp (— exp(x)) is an approximate of the indicator function 1(x < 0), and
so the integrand of the left-hand side of (1.10) approximates P(17 + s < 0) for large s. This
heuristic is made rigorous in Section 2.1. Proposition 1.3 was conjectured in [9, Theorem 7.6],
which proves the analogous formula for the height function of half-space ASEP and computes
asymptotics which were expected to lead to the above result on the KPZ equation. Combining
their result with [40, Theorem 1.2] yields Proposition 1.3.

We our now ready to state our main result, Theorem 1.4, which establishes upper and lower
bounds on the lower tail probability P(77 < —s) for large but fixed times 7 > 0.

Theorem 1.4. Let 11 denote the solution to the half-space KPZ equation with Neumann
boundary parameter A = —1/2 and narrow-wedge initial data, centered and re-scaled as
in (1.8). Fixany n > 0, ¢ € (0,1/3), § € (0,1/4), and Ty > 0. There exist positive constants
S :=S80,¢,08, Ty, C:=C(Ty), K| :=K(¢,8, Ty), and K, := K»(Ty) such that for all s > S
and T > Ty, we have

2(14C
_ <l§”€)T1/3s5/2 —Kys3

P(Tr <—s)>e +e , (1.11)
and
_20-Ce) 71/3,5/2 _egT1/3_ 332 _1=Ce3
P(Yr < —s5)<e  Tbr +e 2 W4 eT T Y (1.12)
Assuming Conjecture 1, we have the stronger
2(1-Ce) 71/3 .5/2 1/3 3-6 1-Ce 3
P(Tr <—s)<e 150 T2 4 pmasTIPoKi™ = igits? (1.13)

Conjecture 1 has a rather technical statement regarding the leading-order asymptotics of
Ablowitz—Segur solution uas(x; y) to the Painlevé II equation in a certain region, named the
Stokes region. Its openness is due to the difficulty of a certain Riemann—Hilbert problem.
One major goal of this article is to highlight the direct connection between leading-order
asymptotics of uas(x; y) in the Stokes region and the lower-tail of the KPZ equation, in hopes
of motivating further study of the Stokes region. For the sake of a more stream-lined discussion
of Theorem 1.4 and its proof, we postpone a detailed discussion of Conjecture 1 and the
Painlevé II equation to Section 1.3. The proof of Theorem 1.4 is given in Section 2.1. We
note that (1.12) and (1.13) differ only in the second term of each.

We can see Theorem 1.4 displays three distinct regions of decay as follows. First, note
that Proposition 1.2 implies that, as T — oo, P(1r < —s) should decay according to
Fooe(—s), which is approximately exp (—ﬁs3) for large s (see Proposition 7.1). This cubic
decay is exhibited in the last terms of (1.11)—(1.13). Note that in the range T3 > s > 0,
either the second or the third term of (1.13) dominates; in (1.11), the second term dominates
(though in the lower bound (1.11), the prefactor of the cubic exponent is not explicit). When
T — oo, the third term of (1.13) dominates and thus recovers the cubic decay of the Fgop
tail. On the other hand, in the “short time deep tail” region s > T2/3, the first term of both
(1.11) and (1.13) dominates; however, in (1.12), the second term dominates the first term
in all regions. The 5/2 exponent and the é prefactor for this region were first observed
in [33]. The crossover from 5/2 to cubic exponent that occurs when s is of order T2/3 can
be understood in terms of large deviations: as 7 — oo, the crossover is exhibited by the
large deviation rate function for the half-space KPZ equation, which has speed T2. In the full-
space case, this crossover was first predicted by [48], which also contains the first prediction
of the full-space rate function; [22,32,35] each provide alternative methods of computing this
rate function. In particular, [22] showed that the half-space rate function is simply one-half
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that of the full space. The rate functions for both the full and half-space case were finally
rigorously established by [52]. Just over a year after the posting of this paper, the preprint [55]
obtained sharper upper and lower bounds than in Theorem 1.4 by proving large deviation
bounds for the Airy point process. In particular, their upper-bound on the lower tail probability
L _20-Ce) 71/35/2 —esT1B k3 _1-Ce3 .

is given by e™ I5r +e 2 + e 24 %, so that the aforementioned crossover
from exponent 5/2 to 3 is attained. Large deviation bounds for the Airy point process were
originally (non-rigorously) derived by [22] using Coulomb gas heuristics.

The techniques used to prove Theorem 1.4 are heavily inspired by the work of [21] on the
lower tail of the full-space KPZ equation. Their work starts with the full-space KPZ analog
to (1.9), which was established in [14], where the full-space KPZ equation is related to a
multiplicative functional of the Airy (GUE) point process by manipulations of an exact formula
for the one-point distribution of SHE with delta initial data. This one-point distribution formula
was simultaneously and independently computed in [3,18,24,47] and rigorously proved in [3].
In [21], the formula of [14] was manipulated to yield tight bounds on the lower tail of the
full-space KPZ equation; however, in order to do this, [21] first establishes appropriate control
on the fluctuations of the GUE point process. Their work strongly suggests that a careful
manipulation of (1.10) would similarly yield tight bounds on the lower tail of the half-space
KPZ equation, given analogous control on the GOE point process; indeed, this is the approach
taken in the current article. We now outline our approach to studying the GOE point process
and the methods used therein.

1.2. Fluctuations of the GOE point process

In Section 3.1, we define the GOE point process and describe its key properties as a simple
Pfaffian point process (also defined in that section). The estimates on the GOE point process
needed in this article pertain to (1) controlling the locations of individual GOE points, and (2)
controlling the number of GOE points within intervals.

Towards (1), we detail in Section 3.2 the well-studied connection between the (stochas-
tic) Airy operator (SAO) and the GOE points, and describe the relevant known results
(Propositions 3.2-3.4). In particular, the seminal work of [45] (Proposition 3.2) gives an
equivalence in distribution between the eigenvalues of the § = 1 SAO and the GOE points,
while [21, Proposition 4.5] (Proposition 3.3) establishes uniform control on the deviations of
the (random) SAO eigenvalues from deterministic locations given by the eigenvalues (1;) of the
(deterministic) Airy operator. Theorem 1.5 is then simply the combination of Propositions 3.2
and 3.3.

Theorem 1.5. For e € (0, 1), let CgGOE be the smallest real number such that, for all k > 1,
(1 —&)hp — CS%F < —a; < (1 4 &)rq + CEOF (1.14)

where ay, is the kth largest point of the GOE point process and ),y is the kth smallest eigenvalue
of the Airy operator. Then, for all ¢,5 € (0, 1), there exist constants Sy = Sy(e, ) and
k = k(g, 8) such that, for all s > Sy,

P(CSOF > 5) < kexp (—ks'™?). (1.15)

Theorem 1.5 establishes an upper bound on the probability that the a; deviate away from
the (deterministic) Ay, uniformly in k. This is extremely helpful because we know what the i
. i 2/3
look like: Proposition 3.4 tells us that' A ~ (%”k) 3
1 Here, f(k) ~ g(k) if they are asymptotically equivalent, i.c., limg_, oo % =1.
369
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Towards (2), we define the counting function
xF: BR) — Z-y,  x°°%(B) :=#{k :a, € B}, VB € B(R),

where B(R) denotes the Borel o -algebra of R. xC%E()isa non-negative integer-valued random
measure on (R, B(R), u), where p denotes the Lebesgue measure on R, that, informally
speaking, counts the number of GOE points in a Borel set B— see Section 3.1 for a formal
description. We will also refer to x9°F as the GOE point process. The mean of xY°F on

intervals is given by Theorem 1.6, which is proved at the end of Section 3.1.

Theorem 1.6. Define the interval B(s) .= [—s, 00). For any s > 0, we have
2
Ecor [x " (Bi(s)] = 2—s¥ + Di(s), (1.16)

where sup;. | Di(s)| < oo.

We expect that this result and other statistics for y 9°F should be known; however, we were

unable to find such results in the literature. Note that the leading-order term s3? of (1.16)
matches the leading-order term of the expectation of the GUE (or, Airy) point process ' on
B1(s), computed in [49]. [49] also computes the variance of and establishes a central limit
theorem for x 1.

In light of Theorem 1.6, we are interested in deviations of order 5372 of X on intervals
of size s. The upper deviations result (Theorem 1.12, proved in Section 6) will actually follow
from the results discussed in (1) and the lower deviations result (Theorem 1.11, proved in
Section 5), and so we now turn our attention to the lower deviations. To introduce important
related objects and motivate the results that follow, we begin with a preliminary computation
of the lower deviations of x“OF. Recall from Theorem 1.6 the interval B(s). For any s € R
and v > 0, define

Fi(s,v) = E [exp (—vx“°" (B1(s)))] .

F\(s, v) is the cumulant generating function for xS°E. Now, for any positive ¢, v and s, taking
f(x) = e in Markov’s inequality and then applying Theorem 1.6 yields

P (x99 (B1(s)) — E[x (B 1(s)] < —es™?)
< exp (—cvs3/2 + vE [XGOE(%‘Y)]) Fi(—s,v),

=exp ((% —c)vs3/2+vD1(s)> Fi(—s,v), (1.17)

GOE

Thus, we see that in order to achieve decay in (1.17) for any ¢ > 0, one needs to achieve an
upper-bound like”

Fi(— _2 an
1(—s,v) < exp 37_[vs (14+o0(1)), (1.18)

for some choice of v. Obtaining (1.18) for optimal v will be a major technical focus of this
article. An important step towards this end is Theorem 1.7. Before giving this result, we
must first uncover a connection to the thinned GOE/GUE point processes with parameter
y = y(@) = 1 — e and the Ablowitz—Segur solution to the Painlevé II equation (this
connection is developed further in Section 4).

2 Here, we use “little-Oh” notation: f(s) is called o(1) if lims_— o f(s) = 0.
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The Ablowitz—Segur (AS) solution uas(-, y) to the Painlevé II equation is a one parameter
family of solutions to

"o o__ 3
Upg = XUAS + 2Upg

with the boundary condition

x_]/4 2.3
Uas(x; 1) = Vﬁe‘i"” (1+o0(1)) (1.19)

as x — 00. When y = 1, uag is called the Hastings—McLeod solution and typically denoted
uym. This particular solution was introduced in [29], where they solved the connection problem,
that is, gave an asymptotic formula for ugy(x) as x — —oo. For y € (0, 1) fixed, the
connection problem for usg was partially solved by [1,2].

The thinned version of a point process with parameter y removes each particle independently
with probability 1 — y; we discuss the thinned GOE point process formally in Section 4.1. In
Theorem 4.4, we prove by way of a Fredholm Pfaffian formula (defined in Section 4.2) that

Fi(s,v) = Fi(s,v), forall s € R and v > 0,

where F(s, v) denotes the distribution function of the largest particle of the thinned GOE point
process with parameter y (v). Let F,(s, v) denote the distribution function of the largest particle
of the thinned GUE point process with parameter y(v). In Proposition 4.1, we recall a formula
from [17] that relates Fi(s, v) to F,(s, 2v) and uags, described in the next subsection. It is a
result of [21], restated here as Proposition 4.2, that

Fa(s,v) = Fy(s, v) := E[exp (—vx™ ([s, 00)))], forall s € R and v > 0.
Combining Proposition 4.1, Proposition 4.2, and Theorem 4.4 yields Theorem 1.7, which yields

a formula for Fi(s, v) in terms of F>(s, v) and uas. Theorem 1.7 is proved in Section 4.3.

Theorem 1.7. Fix any s € R and v > 0. Define y == y(v) =1 —e V" and y» = y»(v) =
1 — e~2'; note that vy € [0, 1). Then

cosh , — /¥, sinh , —1
Fi(s.v) = \/Fz(s,Zv)\/l 4 Sosh (s, v2) > vz Sinh 4(s. y2) (1.20)
—y

where
o0
u(s, y2) = f ups(x; y2) dx.

In Corollary 5.1, we give an asymptotic expansion for Fi(s, v) for any fixed v > 0 that
satisfies (1.18), thus yielding exponential decay on the right-hand of (1.17) with exponent
—s3/2. This yields Eq. (1.32) of Theorem 1.11. However, the authors of [21] found optimum
decay of F,(s,2v) when v = %s%_‘s. Indeed, part of [21, Theorem 1.7] (recorded here as

Proposition 4.2) states that, for any § € (0, 2/5), as s — oo,
Fy(—s,20) < exp(—%sH + 0(53’%)> . (1.21)
Fix 8 € (0, 2/5). Throughout this paper, we fix
5 and §i=10() = 1 —exp(—s37). (1.22)
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Now, take v := v in the notation of Theorem 1.7. Then upon substituting (1.21) into
Theorem 1.7, we see that obtaining the bound
exp(li(=s, 7)) = exp(o(s* ™)) (1.23)

would actually yield (1.18) with v = v there. The result would be exponential decay on the
right-hand side (1.17) with exponent —s3~% instead of —s*2. Thus, showing (1.23) translates
directly into a vastly improved bound on the right-hand of (1.17).

To achieve (1.23), one needs to control uas(x; y) for all x € [—s, 00) and s — oco. While
much is known about both uas(x; y) and u(s; y) for values of y fixed (with respect to x),
much less is understood for general values of . As we show in the following subsection, there
is a particular region of x, known as the Stokes region, on which leading-order asymptotics
of uas(x; ) do not exist at this time. This lack of knowledge prevents us from bounding in
absolute value the integral of uas(x; y) on the Stokes region, and therefore, we cannot establish
(1.23); however, we show that given crude leading-order asymptotics on uas in the Stokes
region (see Conjecture 1), we can obtain (1.23).

1.3. Asymptotics of the Ablowitz—Segur solution to the Painlevé Il equation

In this subsection, we recall what is known and unknown about the asymptotic properties of
the Ablowitz—Segur solution to the Painlevé II equation as both x and y vary and detail what
these results imply for Fi(s, v).

As explained in the last paragraph of the previous subsection, we are interested in uas(x; y)
over x € [—s,00), where y = 1 — exp(—s%"s), for any § € (0,2/5). Our goal is to show
(1.23), for which we seek appropriate leading-order asymptotics of uas(x; ) as x — —oo. To
understand uas(x; y) for y that may vary with x, we turn to the important work of Bothner [16],
which contains the most up-to-date results on such asymptotics in the case x — —oo and
vl 1t 1 (regular transition in [16]) or the case x — —oo and |y| | 1 (singular transition
in [16]). These results were achieved via a non-linear steepest descent analysis applied to a
certain Riemann—Hilbert problem. Since s — oo, we are interested in the regular transition
results of [16]. To state these results, we define the following parameter for any x € R and
y € [0, I):

R =R, y)= log(1 —y). (1.24)

-1
(—xpP
Note that the exponential decay in (1.19) implies that for any constant xo > 0, the integral
of uas(x; y) over [—xp, 0o) is bounded. The remaining region x € [—s, —xo) iS contained
in 8 € (0,00). For any ¢ € (0, 23£), Theorems 1.10 and 1.12 of [16] achieve asymptotic

expressions for uas(x; y) as x — —oo in the regions X € [1(¢) = (O, ¥ — ;] and X €
L = [2‘3[ oo) respectively.® [16, Theorem 1.12] is transcribed here as Proposition 4.6. [16,

Theorem 1.10] gives an expression in terms of Jacobi theta functions and elliptic integrals that is
pseudoperiodic. In Lemma 4.5, we manipulate this result to show that there exists o € (0, Z*Tﬁ)
such that uas(x; 7) = O((—x)"?) uniformly over X € (0, 23ﬁ — ¢] as x — —oo. From
Lemma 4.5 and Proposition 4.6, it follows almost immediately that

/ luasCx; )| dx = O(s¥?). (1.25)
Rel (g

3 Actually, the expression holds for any fixed f € R and LL(f) := [2‘[ f);/z oo) However, considering f

(—x
large (but fixed) does not change our results asymptotically, and so we simply take f = 0.
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In [16], I,(¢) is named the regular Boutroux region and I, the Hastings—McLeod region; the
remaining region of 8 > 0 was named the Stokes region.

Definition 1.8 (Stokes Region). For any ¢ € (0, %ﬁ), the region R € (%ﬁ -, %ﬁ) is referred
to as the Stokes region.

[16] does not give a full asymptotic expression for uag(x; y) in the Stokes region, stating
that “the nonlinear steepest descent analysis becomes increasingly difficult.” Moreover, at the
time of this paper’s release, it appears that no progress has been made towards such results
in the Stokes region [15]. As a result, not enough is currently known about uag in the Stokes
region to obtain (1.23), and thus we cannot at present achieve (1.18) with v = %s%_‘s for any
8 €(0,2/5).

However, observe that only a crude upper-bound on uas(x; y) is needed in order to show
(1.23). Indeed, for R = R(x, y), the part of the Stokes region that we are interested in is

(2Tﬁ — o, %i), which is equivalent to

x €Ty = Io(s, 8) = (HEZ — go) 251750, —(B2) 25159 . (1.26)
Note that Iy has length C sl_%‘s, where C denotes some constant.
Conjecture 1. Fix § € (0,2/5). Recall y = y(s, ) from (1.22), and recall 1y := Iy(s, §)

from (1.26). As s — 00, we have the following uniformly over all x € 1y (equivalently,
Ri=R(x, 7) € (B2 — 4o, 22)):

luas(x; 7) = o(s>5). (1.27)

Assuming Conjecture 1, we immediately have

luas(x; )| dx = o(s*~?), (1.28)
Io
so that (1.23) follows from (1.25) and the last display. To be precise, we have the following
results.

Lemma 1.9. Fix § € (0,2/5). Recall the function w from Theorem 1.7. There exist positive
constants C := C(8) and Sy := So(8) such that for all s > S,

/ uas(x; y) dx| .

Iy

lu(=s, ¥)| < Cs* + (1.29)

Assuming Conjecture 1, we have the following expression as s — o0,
(=5, P) = o(s*™). (1.30)

Lemma 1.9 is proved in Section 4.4. Combining this result with Theorem 1.7 and (1.21)
will yield the following bound.

Theorem 1.10. Assume Conjecture 1. For § € (0,2/5), we have the following expression as
s —> 00

1 3 1 5
F <—s, —52 5) <exp (——s3 (1 +o(1))> . (1.31)
2 3
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Theorem 1.10 is proved in Section 4.3.
Regarding evidence for the validity of Conjecture 1, we note that a leading-order expression
for uas(x; ) was obtained in [16, Theorem 1.13] for the portion of the Stokes region satisfying

22 log(—x)3/?
N> == —ﬁ%,

for any f3 < 7/6. The expression shows that us(x; 7) = O(x'/?) uniformly over this region
of R, which is consistent with Conjecture 1. We note further that the bound in (1.27) is much
looser than both the aforementioned result and the existing leading-order asymptotics given
for uas(x; y) outside of the Stokes region (Proposition 4.6 and Lemma 4.5). Beyond these
observations, we do not attempt to provide further justification for Conjecture 1.

1.4. Main results on the GOE Point Process

Theorems 1.11 and 1.12 establish the first bounds on the fluctuations of xY°F below and
above its mean, respectively, and may be of independent interest.

Theorem 1.11. Fix any n > 0, ¢ > 0, and 6 € (0,2/5). There exists a positive constant
So := So(n, ¢) such that for all s > S,

P (x99%[—s, 00) — E[x " ([—s, 00))] < —cs¥/?) < exp (—ns>?) . (1.32)
Furthermore, assuming Conjecture 1, there exist positive constants Sy .= So(6) and K := K(8)
such that for all s > Sy and ¢ > 0,

P (x % (B1(s) — ELx “F(Bi(s)] < —es™?) < exp (—%cs”(l + 0(1))> . (133

where B(s) = [—s, 00).

Theorem 1.11 is proved in Section 5, essentially by combining (1.17), (1.31), and (5.1).

Theorem 1.12. Consider the intervals

B1(L) := [—¢, 00), and

Br() :=[—kt, —(k — 1)¢) for k € Z-, .
Fix ¢ > 0 and § € (0,2/5). There exist Ly := Lo(c, 8) and C .= C(c, §) > 0 such that, for all
£ > Lo and for all k € Z>,, we have

P (x P BL(0) — E[x“H(Br(0)] = c£¥?) < exp(-Ct'"’). (134)

Theorem 1.12 is proved in Section 6.
1.5. Outline

We now give an outline for the remainder of the article. In Section 2, we prove Theorem 1.4
by realizing the left-hand side of the Laplace transform formula (1.10) as an approximate
indicator function for P(17 < —s). This translates our problem into bounding a multiplicative
functional of the GOE point process, i.e., the right-hand side of (1.10). These bounds are given
by Proposition 2.2.

We next turn to a fine analysis of the GOE point process, which involves estimating the
typical locations of the GOE points in large intervals and bounding their deviations from
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these locations. In Section 3, we define the GOE point process (and Pfaffian point processes
in general), and use known results on its correlation functions to prove Theorem 1.6. We
then discuss the important connection with the eigenvalues of the stochastic Airy operator
(abbreviated SAO). In particular, the result of [45] (Proposition 3.2) gives an equivalence
in distribution between the GOE points and the negatives of the SAO eigenvalues. Further-
more, [21, Proposition 4.5] (Proposition 3.3) establishes an upper bound on deviations of the
SAO eigenvalues (uniformly over all eigenvalues) from their “typical locations”, which are
given by the eigenvalues of the Airy operator. The locations of these deterministic eigenvalues
are given by a result of [37] (Proposition 3.4). Combining Propositions 3.2 and 3.3 yields
Theorem 1.5. Thus, we are able to effectively estimate the locations of individual GOE points.

In Section 4, we turn our attention to the cumulant generating function Fj(—s, v) for
the GOE point process. The importance of this function was established in Eq. (1.17) of
Section 1.2. Via a Fredholm Pfaffian formula for F;(—s, v), we prove in Theorem 4.4 a key
equality between F(—s, v) and the distribution function of the largest eigenvalue of the thinned
GOE point process. This allows us to translate the work of [17] on this distribution function to
Fi(—s, v), which in particular leads to the proofs of Theorem 1.7 and (assuming Lemma 1.9)
Theorem 1.10 in Section 4.3. Lemma 1.9 is proved in Section 4.4.

In Sections 5 and 6 , we prove Theorems 1.11 and 1.12 respectively. Theorem 1.11 is
proved essentially by substituting the results of Corollary 5.1 and Theorem 1.10 into (1.17).
Our strategy for proving Theorem 1.12 involves approximating the number of GOE points in
a closed interval of length s by carefully estimating the nearest GOE points to the endpoints
of this interval, and then bounding the fluctuations of these GOE points via Theorem 1.5.

In Section 7, we apply our work on the GOE point process to prove Proposition 2.2.

2. Proof of the main theorem

We begin by establishing upper and lower bounds on the right-hand side of the Laplace
transform formula (1.10) in Proposition 2.1.

Proposition 2.1. Fix any n > 0, ¢ € (0,1/3), § € (0, 1/4), and Ty > 0. There exist positive
constants Sy = So(n, €,8, Ty), C .= C(Tp), K; := Ky(¢,8,Ty) > 0, and K, := K»(Tp) > 0
such that for all s > Sy and T > Ty, we have

1
E | exp (_Z exp (TI/B(TT —I—s))) >e

2(1+Ce) +1/3 .5/2 3
=157 T 135/ +€7K2s

2.1

and

] -
E | exp (—Z exp (T1/3(TT +s))) <e

2(1-Ce) 11/3 5/2 e rl/3 3/2 1-Ce
,TT/S/ +e*§ST/*775/ 1-Ce

fe s (22)
Assuming Conjecture 1, we have the stronger upper bound

_20=Ce) r1/3.5/2 _eorl/3_ 3-8 _1-Ce 3
51 /s +e 55T Kis +e 245

_ ! -
E | exp (_4_1 exp (T1/3(TT +s))) <e

(2.3)

We prove Proposition 2.1 in Section 2.2. We now prove the main result.
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2.1. Proof of Theorem 1.4
From Markov’s inequality, we have

P(Tr < —s)=F (eXp (—% exp (T'3(Tr + s))) > e1/4>

1
< e*E [exp (_Z exp (T'3(Yr + s)))i| )
From the above, we see that (2.2) and (2.3) imply (1.12) and (1.13) of Theorem 1.4,

respectively.
We now show that (2.1) yields (1.11). Let § := (1 — &)~'s. Observe that

R=E [exp (_4]_1 exp (T'°(Yr + E))):|

IA

—5)+1 (Y7 > —s)exp (—% exp (T'°(Yr + 5)))}

IA

<E []1 (Yr < —s)+1 (Y7 > —s)exp (—%exp (£§T1/3))j| ) (2.4)

The second inequality follows from the fact that 7y > —s implies 77 + 5 > e5. Continuing
from (2.4), we compute

1
R<P(Tr < —s)+exp (—Zexp (eET'/3)> . (2.5)
It follows from (2.1) that for all s > S := S(¢, 8, Tp) and T > Ty,
2
R > exp <—(1 +Ce + C’S)FTWSS/Z) +exp (—Kas”) . (2.6)
T

Here, the C’e term appears because 5°/> < s%/2(1 + C’e) for some constant C’ > 0. We now
note that there exists a constant S" := S'(e, 8, To) such that for all s > S" and T > Ty,

2 5/2
exp (eETm) > T1/31s5— —loge, and thus
i

157

Solving for P(17 < —s) in (2.5) and substituting the lower bound (2.6) on R and the upper
bound (2.7) on exp (— exp (SETUS)) yields, for all s > max{S, S’} and for all T > Ty,

exp (—exp (e5T'/%)) < eexp <—LT1/3S5/2) ) 2.7)

2
P(Yr < —s) > (1 —é&)exp (—(1 +(C+ c’)e)ﬁrl/%”z) +exp (—K»s?) .

The multiplicative factor (1 —¢) can be absorbed into the (14-(C+C")e) factor on the right-hand
side above. Finally, taking C := C + C’ yields the right-hand side of (1.11), thus completing
the proof of Theorem 1.4. [

2.2. Proof of Proposition 2.1

As above, let (a; > a; > ...) denote the GOE point process. Define
1
Ii(x) == , and 2.8)
\/1 + exp(T13(x + 5))

376



YH. Kim Stochastic Processes and their Applications 142 (2021) 365-406

Jy(x) := —log(Iy(x)) = %log(l +exp(TY3(x +5))). (2.9

We now give upper and lower bounds on Egog []_[,fil IS(ak)]. These bounds and Proposition 1.3
allow us to complete the proof of Proposition 2.1.

Proposition 2.2. Fix any n > 0, ¢ € (0,1/3), § € (0, 1/4), and Ty > 0. There exist positive
constants Sy = So(n, &, 8, Tp), C = C(Ty), K| = Ki(¢,8,Ty) > 0, and K, .= K»(Tp) > 0
such that for all s > Sy and T > Ty, we have

- -
_2(1=Ce) 71/3 5/2 _eorl/3_ 32 _1-Ce 3
Ecor | [ [ L@ | < e 7 708 4 em i Eom iy o s (2.10)
| k=1 i
and
[ 1 2(14Ce)
_204Ce) p1/3,5/2 k3
Ecoe | [ [ fs(a) | = e 7 7087 oo @.11)
| k=1 i
Assuming Conjecture 1, we have the stronger upper bound
[ 1 2(1—Ce) 1-C
_2(=Ce) 71/3 .5/2 _eopl/3_ g 3-8 _1-Ce 3
Ecor nls(ak) <e Tasm TS g om s TR g pm s (2.12)
| k=1 i

We complete the proof of (2.11) and (2.12) in Section 7.1, and the proof of(2.10) in
Section 7.2.

Proof of Proposition 2.1. This follows immediately from Propositions 1.3 and 2.2. O

3. The GOE point process

Proposition 2.2 reduces our problem to a question about the GOE point process. In this
section, we formally define this process and examine results pertaining to the statistics of the
process, such as the distribution of the GOE points, the typical locations of individual points,
and deviations away from these typical locations. The results developed here connect the GOE
point process to the stochastic Airy operator (see Section 3.2) and will be crucial to the proofs
that follow.

3.1. First notions

The GOE point process, denoted by (a; > ay > ---) or x9°F, is a simple Pfaffian point
process on (R, B(R), u), where here p denotes Lebesgue measure. We define this object
now. We first define point processes via random point configurations (see, for instance, [4,
Section 4.2.1]). Give R the Borel sigma algebra B(R) equipped with a positive Radon measure
w1 (not necessarily Lebesgue). Let Conf(R) denote the space of configurations of R, that is,
discrete subsets. For any B € B(R) and X € Conf(R), let Ng(X) := #{B N X}. Endow Conf(R)
with the sigma algebra )’ generated by the cylinder sets Cf = {X € Conf(R) : Np(X) = n},
for n € Z*. A point process is a probability measure v on (Conf(R), X). [4, Lemma 4.2.2]
shows that a random configuration X with distribution v can be associated to a non-negative
integer-valued random measure y on (R, B(R), u) such that

x(B) = Np(X),
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and this random measure x will also be referred to as the point process when clear. A point
process is called simple if u(e € R : x({e}) > 1) = 0. Intuitively, a simple point process
x evaluated on a Borel set B counts the number of points contained in B of the designated
random configuration.

Now, for k > 1, consider the measure y;x on R such that for disjoint Borel sets By, ..., By €
B(R),

pk(By x - -+ x By) = E, [#{k-tuples of distinct points x; € X N By, ..., x; € X N By}].

Assuming that u; is absolutely continuous with respect to u®*, we define the k-point
correlation function p; of x to be the Radon-Nykodym derivative of 11, with respect to u®*.
This is a locally integrable function py : RF — [0, 0o) such that, for measurable functions
f:R — C, we have

E | Y fG0.. fo) =/kmxl,...,xk>f(x1>...f<xk>du®". 3.1

Here, X is a random configuration with law v. One might note that our definition of o does
not specify its value on points (xy, ..., x;) where x; = x; for some i # j. On such points,
we set pr = 0; to understand the reasoning behind this, see [4, Remark 4.2.4]. We call x a
Pfaffian point process if there exists a 2 x 2 skew-symmetric matrix-kernel K : R? — M,(C)
such that

pr(x1, ..., xx) = P K (x, xj)]k

ij=1

where Pf denotes the Pfaffian.

The GOE point process is the simple Pfaffian point process with correlation kernel
whose explicit form can be found, for instance, in [9, Definition 6.1] (we will not need the
explicit form of KGOF here). The GOE point process can be constructed as the limiting point
process of the largest eigenvalues of the GOE n x n ensemble under so-called edge scaling,
that is, centering by 2./n and scaling by n'/%. We write xS°F to denote the associated random
measure and ,o,?OE to denote the kth correlation function of the GOE point process. We also
write (a; > ap > ---) to denote the random configuration of GOE points.

Proposition 1.3 and the work achieved in Section 2.1 show that studying the GOE point
process can serve as a proxy for studying the lower tail of the half-space KPZ equation.
Theorem 1.6 establishes a basic statistic of the GOE point process: its expectation on the
interval [—s, 00), for any s > 0. We now prove this theorem.

K GOE

Proof of Theorem 1.6. Note that for any point process x with one-point correlation function
01, we have on any interval I C R,

Ex(D] = /Ipl(X) dx.

Thus, we have

o0

Eoor [x (B ()] = f pSOE(x) dx | (3.2)

—S
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for s > 0. Let ,olGUE denote the one-point correlation function for x “VE. From Equations (7.67)
and (7.147) of [27], we have the relation*

%) = o) + i (1 = [ A ). G

where Ai(-) denotes the Airy function. Since ffooo Ai(t) dt = 1 ([39, Equation 9.10.11]), we
may write (3.3) as

%0 = o0 + 38 [ i ar. G4

Now, [27, Equation 7.69], [39, Equation 9.7.9], and [39, Equation 9.10.6] yield the following
asymptotic expansions for p{UF(x), Ai(x), and [*_ Ai(t) dr respectively, as x — —oo:

V=E s (30)

pSUE(x) = T ) + O((_x)fS/z)’ (3.5)
cos(2(—x)? - T
Ai(x) = (j/;(—x)l . ) +0((=07"), and (3.6)
x cos(2(—x)*2 + 2
/_ A di = (\3/5(—)6)3 p J +0((=07"). (3.7)

Substituting (3.5)—(3.7) into (3.4) yields

e

GOE X -5/2
Pi (x)=T+@((—x) /),
as x — —oo (note that the cosine terms above cancel with one another after substitution into

(3.4)). It follows that

_1 2
/ 0% (x) dx = §s3/2 +D4(s), (3.8)

s

where D (s) satisfies sup,._, [D(s)| < oo.
Next, because p{"E(x), Ai(x), and [*_ Ai(r) dt are bounded over x € [—1, 0], we have

0
| o0 dx =22, (3.9)
—1

for some constant ©, < oo.
It remains to handle the integral of p?OE(x) over x € [0, 00). [27, Equation 7.72] states that

p1(x) = e B (1 + o(1))

and thus we have [~ pfUF(x) dx = D3, for some constant D3. Recall that Ai(x) > 0 for
x > 0. It then follows from (3.4) and the triangle inequality that

/ ” 5% (x) dx / ' Ai(t) dt
0 —00

4127, Equation 7.147] writes this equation with “K%ft(x, x)” instead of plGUE(x), as we have here, where
Kft(., ) is defined in [27, Equation 7.12]. Our expression follows from [27, Equation 7.67], which shows that
K*ft(x, x) = plGUE(x), for any x € R.

dx . (3.10)

1 oo
<1931+ —/ Ai(x)
2 Jo
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Since [*_Ai(r) dt = 1, ff)oo Ai(t) dt =2/3 ([39, Equation 9.10.11]), and Ai(¢) > 0 for ¢t > 0,
we have | [ Ai(r) dt| < | [ Ai(t) dt| =1 for all x > 0. It then follows from (3.10) and
the identity [, Ai(t) dt = 1/3 that

oo
/ pSOF(x) dx = Dy, (3.11)
0
for some constant 4. Combining Eqgs. (3.2), (3.8), (3.9), and (3.11) yields

2
Ecor [x“F(B1(5))] = 553/2 + Di(s), (3.12)

where Di(s) = D(s) + D, 4+ D4, and therefore clearly satisfies sup,. o |D(s)| < oo. Thus, we
have (1.16). O

3.2. The B stochastic airy operator

We now apply and enhance the tools developed in [21, Section 4.3] to connect the GOE
point process with the eigenvalues of the stochastic Airy operator Hg with B = 1. Observed
in [25] and proved in [45, Theorem 1.1], Proposition 3.2 gives an equivalence in distribution
between the eigenvalues of Hg and the negatives of the GOE points. Proposition 3.3 was proved
in [21, Proposition 4.5], and establishes a uniform bound on the deviations of the (random)
‘Hp eigenvalues from the eigenvalues of the (deterministic) Airy operator, and Theorem 1.5
establishes the same uniform bound on deviations of the GOE points from these deterministic
eigenvalues. Finally, Proposition 3.4, which was proved in [37], approximates the location of
each eigenvalue of the Airy operator.

We now define the stochastic Airy operator through the theory of Schwartz distributions.

Definition 3.1 (stochastic Airy operator). Let D := D(R") denote the space of distributions,
i.e., the continuous dual of the space of smooth, compactly supported test functions equipped
with the topology of uniform convergence of all derivatives on compact sets. All formal
derivatives of any continuous function f are distributions, with action on any test function
¢ € Cy° given by integration by parts as follows:

< ¢, FO0) == (— 1) / FE$O) dx,

where < -, - > is notation not to be confused with the L2 inner product (-, -). In particular,
since Brownian motion B is a random continuous function, its formal derivative B’ is a random
element of D. The 8 > 0 stochastic Airy operator is a random linear map

7‘[,3 : Hl:>c — D
such that
e .
VB

where H,.. is the space of functions f : R™ — R such that for any compact I, f'1(I) € L.
Though D is only closed under multiplication by smooth functions and f € H,.., we make
sense of f B’ as the derivative of [j fB' dx := — [; Bf' dx + f(y)By — f(0)By. The Airy

operator A := —3? + x is the non-random part of Hz.
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To define the eigenvalues/eigenfunctions of Hg, we define the Hilbert space L* with norm

13 =/ (Y +A+x)f%) dx, L*={f:f©0)=0,]fll, < oo}.
0
We say a pair (f, A) € L* x R is an eigenfunction/eigenvalue pair for Hg if Hgf = Af.

The following is a special case of [45, Theorem 1.1], namely, the 8 = 1 case.’

Proposition 3.2 (/45, Theorem 1.1]). Let (A; < A, < ...) denote the eigenvalues of H,, and
recall that (a; > ap > ...) denotes the GOE point process. Then for any k > 1, we have

(—ap, =) 2 (A, A, (3.13)

[45] and [53] show that there exists a random band with uniform width C, around each
eigenvalue of the Airy operator such that each eigenvalue of Hg is contained in the band
around the corresponding Airy operator eigenvalue.

Proposition 3.3 (/2/, Proposition 4.5]). Denote the eigenvalues of the Airy operator A by
(A1 < A2 < ...) and the eigenvalues of Hg by (/lf < /12’3 < ...). For any ¢ € (0, 1), define
the random variable C. as the smallest real number such that for all k > 1,

(1—epp—Ce < AP <1+ )0+ C..

Then for all ¢, € (0, 1), there exist positive constants Sy := Sy(¢, 8), and k = k(g, §) such
that for all s > Sy,

P (CE > %) <wexp(—ks'"?). (3.14)

Proposition 3.3 gives an exponential upper-tail bound on C, that will be crucial to our proof
of Theorem 1.12. Note that Theorem 1.5 follows immediately from Propositions 3.2 and 3.3.

To prove Theorem 1.12, we will also need the following results on the approximate location
of eigenvalues of the Airy operator A = —Bf + x.

Proposition 3.4 ([37]). If the eigenvalues of the Airy operator A are denoted by (A < Ay <
...), then for all n > 1, we have

P k) (3.15)
=5 ("3 n , .
where for some large constant K € R, we have
[R(n)| = K/n.

Corollary 3.5. Forany T € Ry, define k :=k(T) =#{n : X, < T}. We have
2
k=—T3%4C\D),
3
where sup,._ |Ci(x)| < 1; thus,

k—E[x“F[-T, 00)] = Or(1). (3.16)

5 The result is proved for any B: under edge scaling, the k largest eigenvalues of the n x n Hermite S-ensemble
converge jointly in distribution to the smallest k eigenvalues of Hg as n — oo.
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Proof. From (3.15), it is clear that k = | x|, where x € R satisfies

3 1 2/3
T = (7” (x -2+ R(x))) . (3.17)
Solving for x gives
_ 2!
X = 77"+ - +R(x). (3.18)
3r 4

Recall from Proposition 3.4 that |R(x)] < K/x. As T approaches oo, we have x ~
%T” 2, and thus k will simply be the closest integer to %T” 2 4 %. From the expression
E [x99F[~T, 00)] = £T3/> + Dy(T) given by Theorem 1.6, the corollary follows. [J

4. The cumulant generating function for x ¢OF

The proof of Theorem 1.11, which makes up the contents of Section 5, will boil down to

estimating the cumulant generating function for x 9©F,

Fi(s,v) == E [exp (—vx " ([s, 00)))] -

The main result of this section is Theorem 4.4, which connects Fi(s, v) to the distribution
function of the largest eigenvalue of the thinned GOE point process via a Fredholm Pfaffian.
Theorem 4.4 is a major input towards Corollary 5.1 and Theorem 1.10, which provide the
needed bounds on F(s, v) to prove Theorem 1.11 in Section 5.

4.1. The thinned GOE point process and the Painlevé Il equation

Theorem 4.4 equates Fi(s, v) to the distribution function Fi(s, v) of the largest particle
aj(y) of the thinned GOE point process with parameter y := 1 —e~". This is the point process
obtained by independently removing each particle of the GOE point process (see Section 3)
with probability 1 — y. We may similarly define the thinned GUE point process and the
distribution function F,(s, v) of the largest particle of the thinned GUE point process with
parameter y. Note that, like the GOE point process, the thinned GOE point process is simple
and Pfaffian. To see that it is Pfaffian, let {¥;};cy be a sequence of i.i.d. Bernoulli random
variables such that P(Y; = 1) = y. Let v99F and v"i" be the laws on Conf(R) associated to the
GOE and thinned GOE point processes respectively, and let X and X be random configurations

with laws vG9F and v™in respectively. Then, for a measurable function f : R — C, we have
k
El Y fe.fe|=El Y []rfeov
(X1 xp)EXK (1, xp)eXk i=1

=y'E > Jlreo|.

where the last equality follows from the independence of the Y; from each other and from the
GOE point process. We then have from (3.1) that, for any k > 1,

thin k  GOE
P =V P

where pli" denotes the kth correlation functions for the thinned GOE point process. Further-
more, it follows that the correlation kernel for the thinned GOE point process is y K 9OF,
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Proposition 4.1 gives a formula for F(s, v) in terms of F,(s, v) and a certain integral of the
Ablowitz—Segur (AS) solution uas(-, y) to the Painlevé Il equation. Recall from Section 1.3
that uags is a one-parameter family of solutions to

uas(s, ¥)" = xuas(s, y) + 2uxs(s, y)
with boundary condition
—1/4
Youm
Proposition 4.1 comes from [17, Proposition 1.1], though in [17, Remark 1.2], the authors note
that the formula can be obtained via some combination of results in [12].

uas(s, y) = e—§s3/2(1 +0(1)), as s — oo.

Proposition 4.1 ([/7]). For any s € R and v > 0, we have

Fa(s, v) = exp <— /oo(z — $)urs(; ) d:) 4.1)
and
Fils, v) = VG, 2v)\/1 1 Soshls, v2) = ;/i/—z;inh ey =1 2)

where v, (s, y2) and y, are defined as in the statement of Theorem 1.7.

Let F(s,v) = E [exp (—v x A ([, oo)))] be the cumulant generating function of the
GUE point process. One of the major technical achievements of [21] is given below as
Proposition 4.2, which bounds F,(s, v) by equating it to F,(s, v) and then using the connection
to the Painlevé II equation given by (4.1) to conduct a fine analysis.

Proposition 4.2 ([21, Theorem 1.7]). For all v and s in R, we have

Fy(s,v) = Fo(s,v) = exp(—/ (x + s)u%s(x; y) dx) , “4.3)

—S

o]

where y = y(v) = 1 — e™". Furthermore, for any fixed § € (0, %), as s goes to oo,

35

2
log Fa(—s, 5%78) < —3—5378 + (9(53711*1). (4.4)
T
4.2. Fredholm Pfaffians

The Fredholm Pfaffian was first defined in [44]; the definition reproduced below comes
from [5].

Definition 4.3. Let u be a reference measure on R, and let K(x, y) be a 2 x 2 matrix-valued
skew-symmetric kernel on R?. Define

0 1
J(X,Y)Zﬂ(x:y) <_l 0), Vx,yGR.

Then the Fredholm Pfaffian of K is defined by the series expansion
[e.¢]
1 Kk
Pi(J + K2y =1+ Z o /R e /]RPf(K(x,-,xj)f»"jzl)d/t}D (X1, ... X1), 4.5)
k=1

provided that the series converges.
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Let the measure v on (Conf(R), X') be a Pfaffian point process on (R, B(R), n) with matrix
kernel K, and let X denote a random configuration with law v (see Section 3.1 for definitions
of these objects). For any measurable function f : R — C, [44, Theorem 8.2] gives the identity

E, []‘[(1 + f(x)):| =Pi(J + K)oy - (4.6)
xeX

whenever both sides converge absolutely. This identity can be applied to obtain a Fredholm
Pfaffian representation for F;. Consider the GOE point process, which we recall is a Pfaffian
point process on (R, B(R), ), where u denotes the Lebesgue measure. Recall also that we
write (a; > a; > ...) to denote the random configuration of GOE points. For any s € R and
v > 0, taking f(x) := e V1= — 1 in (4.6) yields

Fi(s,v) = Egog []‘[ e—vﬂ<af>f>} =Pf(J + K )2 1)+ 4.7

provided that the right-hand side above converges absolutely. The absolute convergence is
shown in the proof of Theorem 4.4.

Theorem 4.4. Let F/(s, v) denote the distribution function of the largest particle of the thinned
GOE point process a|(y) with parameter y =1 —e~", where s € R and v > 0. Then we have

Fi(s,v) = PE(J — Yy KO) 24 000 = Fi(s, v). (4.8)

where W denotes the Lebesgue measure.

Proof. We begin by demonstrating the absolute convergence of the right-hand side of (4.7),
which may be expanded as

=1 k L (i >s k
1+kX_I:E/R---/RPf(KGOE(x,»,xj))U:lH(e VL= — 1) dp® (xy, . xk)

P (e —1 ,
=1+ g/ f Pf(KGOE(xi,xj))].( .7]du®k(x1,...,xk). “4.9)
k! [5,00) [5,00) b=

k=1

Observe that since v > 0, }e‘“ — 1] < 1. This along with the bound on |Pf (K%OB(x;, x)))

k
=t
given in [36, Proposition 4.1(i)] allows us to compute ’

- |(e_v - 1)k| GOE k ok
ZTf[ )/[ )|Pf(K (xi,xj))i,j:1|du (X150, Xz)
k=1 . 5,00 5,00
>, kki2ck © 3p k
k=1 : s
o kk/2ck
SL e (4.10)

where C is a positive constant, Cs is a positive constant depending only on s, and the above
sum converges due to Stirling’s formula. This establishes the Fredholm Pfaffian representation
(4.7) of Fi(s,v).
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Let us return to the expansion of the Fredholm Pfaffian in (4.9). From the definition of Pf(A),
we see that scaling every entry of the matrix A by some constant ¢ and taking the Pfaffian is
equivalent to c*Pf(A), where A is a 2k x 2k matrix. Thus, from (4.9), we find

o0
(—DF k K
Fi(s,v) = 1+Z T Pf(yKGOE(xi,xj))M:ldp,@ 1y oy Xg)
k=1 . [s,00) [s,00)

=Pf(J — Y K9) 2 (500000 - 4.11)

Now, recall from the first paragraph of Section 4.1 that the thinned GOE point process is
Pfaffian with correlation kernel y K9CE. Thus, the gap probability for the thinned GOE point
process is

Pf(J = Y K912 50000 = Plai(y) < 5) = Fi(s, v).
Substituting this into (4.11) yields (4.8) . U

4.3. Proofs of Theorems 1.7 and 1.10

We are now ready to prove Theorem 1.7. Assuming Lemma 1.9, we will then be able to
prove Theorem 1.10 as well. Lemma 1.9 is proved in Section 4.4.

Proof of Theorem 1.7. Eq. (1.20) follows immediately from (4.2), Proposition 4.2, and
Theorem 4.4. O

Proof of Theorem 1.10. Fix any § € (0,2/5). Take v to be ¥ (so that y = 1 —e~" and y, is
equal to y) in (1.20) . This yields

1 hju(—s, 7) — /7 sinh ju(—s, 7) — |
F <_S7 _s3/2—5> _ /—Fz(_s,s3/2_8)\/]+cos wu(—s, 7) — /7 sinh u(—s, ) '

2 2—vy
(4.12)

Eq. (4.4) gives the following bound as s — oo:

2 ; 1
V F(—s, s3/27%) < \/exp (—3—s35 +O (53_11?)) = exp (—3—535 +O (s31|318)) .
T T

(4.13)

Since y € (0, 1] and 2 — y € [1, 2), the second term on the right-hand side of (4.12) may be
crudely bounded above as s — oo by

VCi + Crexp (In(—=s, P,

for some positive constants C; and C, (independent of s and §). From Lemma 1.9 and the
above display, we find that as s — oo,

\/1 . cosh (=5, 7) — Y7 sinh (s, 7) — |
2-y

= o(s>7%). (4.14)

Substituting the bounds given by (4.13) and (4.14) into (4.12) yields (1.31). O
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4.4. Proof of Lemma 1.9

The proof of Lemma 1.9 is given at the end of this subsection.

Throughout this subsection, as in the statement of Lemma 1.9, we take é§ € (0, 2/5) fixed.
The parameter s is taken to be positive, and we define v := v(s, §) and y = y (s, §) as in (1.22).
Note that 7 = 1 — e~2”. For some fixed constants xo > 0 and &y € (0, 24/2/3) to be specified
later, we will consider upper bounds on uas(x; y) over each of the following intervals of x:

1. [-s, —(%ﬁ — g2,
2 2
2. H%i - §0)_2/jsl_§6, —(%)_2/33175) =1
3. [FER)A, —xo)
4. [_.X(), OO),

Consider 8 = R(x, y) (where R(x, y) was defined for general y € [0, 1) in (1.24)). The
interval (1) corresponds to R € I;(¢o) = [s 2, ¥ — &o], which we recall from Section 1.3 is
contained in the regular Boutroux region I,(¢) := (0, %5 — &o). [16, Theorem 1.10] gives an
expansion for uas(x; y) (for general x and y such that 8 € I;(¢)) in terms of Jacobi theta
functions and elliptic integrals. In [21, Section 6], the authors manipulate the formula from [16,
Theorem 1.10] into a form that is more amenable to obtaining the estimates that they seek. In
our case, we only seek crude upper bounds on u g, for which [16, Theorem 1.10] and the work
of [21, Section 6] can be combined to obtain an upper bound of order (—x)'/? on uxs(x; y)
uniformly over 8 € I1(Zp).

Lemma 4.5. For some constant & € (0,2~/2/3), there exist constants Sy > 0 and C > 0
such that for all s > Sy and for all R € I,(¢y), we have

luas(x; )| < C(—=x)"/%. (4.15)

Proof. In what follows, we rely heavily on the notation set forth at the start of [21,
Section 6.1]— since this notation is used only in the present proof, which is rather short, we do
not redefine their notation here. From equations 6.1 and 6.2 of [21]° (which is a reformulation
of Equations 1.25 and 1.26 of [16]), we see that it suffices to find appropriate bounds on

K and od 2PV @) R) (4.16)
where we define ¥ = L;Z It follows from [21, Equations 6.3, 6.4] that x(X) is bounded

uniformly over bounded regions of R, and so % is bounded uniformly over 8 € I;(Zp).
+x
Next, [21, Equation 6.9] implies that there exist ro € [0, 1) and C; > 0 such that for all
r = ro,

led(z, )| < 14 Cyr?. (4.17)

It is shown in the proof of Lemma 6.3 of [21] that k¥ goes to zero as N goes to zero, and so
there exists ¢ sufficiently close to Zﬁ/ 3 such that for all ® € (0, ¥ — &o], we have k < ry.

6 While [21, Proposition 6.1] is stated for ¢ € (0, \f2/3), it is written in a footnote that the result holds for all
¢ € (0, 2ﬁ/3), simply because [16, Equation 1.26] holds for this wider range of ¢, and [21, Equation 6.1,6.2] is
a reformulation of [16, Equations 1.25, 1.26].
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Then from (4.17), we have
led (2(=x)*?VK (&), k)| < Ca,
for some C, > 0. Thus, both terms in (4.16) are bounded uniformly over X € I;(gp). Eq. (4.15)
then follows from [21, Proposition 6.1].
Taking ¢p as in Lemma 4.5, it follows from (4.15) that

eV N L

' f Uns(x: 7) dx

S

= ‘/ uas(x; ) dx| < Cys3/?, (4.18)
Nel|(go)

for some positive constant C;.

Interval (2) corresponds to R in the Stokes region (%ﬁ -, %5), defined in Section 1.3.

25

Since Iy has length of order s'73°, Eq. (1.27) of Conjecture 1 implies that

luas(x; )| dx =/ luas(x; )| dx = o(s>7?). (4.19)
w/I-() QG(Z\T/E_LZT‘&)

Interval (3) corresponds to R € L= [%, Xy 3 2s%_‘s), which we recall from Section 1.3

is contained in the Hastings—McLeod region I, = [Z‘TE, 00). Over this region, we have [16,

Theorem 1.12], reformulated below as Proposition 4.6.

Proposition 4.6 ([ /6, Theorem 1.12]"). There exist positive constants xg, vy, and ¢ such that

for all —x > xo, v := —1log(l — y) > vy, and ¥ € I, we have
. T eI
s 7)==\ =5 (1= e +009). (4.20)

where |Jr(x, 8)| < c(—x)73/2.

Take y = y in Proposition 4.6 so that v = 2v (where v was defined at the start of this
_2
subsection), and let x( be as in the proposition. Consider Sy := Sp(8) such that S(; 3 > xo and

SO%ﬂS > vg. Then for any s > Sy and x in interval (3) (equivalently, R € I,), we have —x > x
and 2v > vy. Thus, the hypotheses of the proposition are satisfied, and so there exists a constant
C = C(8) > 0 (independent of the choice of X € I5) such that |uss(x; )| < C(—x)"/2. Thus,
there exists a constant C, := C»>(8) > 0 such that

.
ups(x; 17)‘ = ‘f uas(x; )
/_(zg%z/ss'?‘ feh

Finally, consider interval (4). For any fixed x(, the integral of uas(x; ) over x in interval

< (Cys27 . (4.21)

(4) evaluates to a constant due to the exponential decay in (1.19). That is, there exists a positive

71t may be helpful to match the notation of [16] with ours. We have taken the parameter f, of [16] to be
0. For any y € [0, 1), the function u(x|s) := u(x|(s1, s2,53)) of [16] is equal to uas(x;y) in the special case
s = (=i /y,0,i,/y), as stated in [16, Remark 1.6]. The quantity ¢ of [16] is defined as sgn(3Js1), which is equal
to —1 in our case. The parameter v of [16] is also written here as v. The parameter R of [16] is defined in [16,
Equation 1.21] as v(fx)’3/2, which, for v = —log(l — y), matches our definition of R.
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constant C3 such that

=Cs. (4.22)

/ Uas(rs 7) dx

X0

We are now ready to prove Lemma 1.9.

Proof of Lemma 1.9. Eq. (1.29) follows immediately from (4.18), (4.21), and (4.22).
Eq. (1.30) follows from the additional input (4.19). [

5. Proof of Theorem 1.11

The proof of Theorem 1.11 was sketched in Section 1.2, starting from (1.17). Here, we
give a complete proof. The following corollary follows from Theorem 4.4 and a less precise
formulation of [17, Theorem 1.4], which states that log F;(—s, v) is given by the right-hand
side of (5.1) (and thus, by Theorem 4.4, the same is true for F(—s, v)).

Corollary 5.1 ([17, Theorem 1.4]). Fix y € [0, 1) and define v .= —log(l — y) € [0, o0).
There exist positive constants Sy := So(y) such that for all s > Sy, we have

2 2
log Fi(=s,v) = —5—vs"? + # log(8s¥2) + O(1) . (5.1)

Proof of Theorem 1.11. Fix n > 0, ¢ > 0, and § € (0, 2/5). For brevity, we write .4 to denote
the event

A= {xF[—s, 00) — E[x " ([—s, 00))] < —cs™?} .
For any A > 0, taking f(x) = e~** in Markov’s inequality gives the upper-bound
P(A) < exp (—cks3/2 + AE [XGOE([—S, oo))]) E [exp (—AXGOE([—S, oo)))]
= exp <—C)\.S3/2 + %Aswz + ADl(s)> Fi(—s, M), 5.2)
where (5.2) follows from the substitution of (1.16). Taking A = 2n/c and substituting (5.1)
into (5.2) yields
P(A) < exp (—2ns** + O(logs)) < exp (—ns>?),

where the last inequality holds for all s sufficiently large (depending on n and c). Thus, we
have (1.32). ,
Now, assume Conjecture 1. Then taking A = 152

% in (5.2) gives

! 1 I 1 3
FA) = exp <_§CS3_6 + 3_7TSS_6 + ES;_SDl(S)> Fi <—s, Es;_‘s) .

Substituting the bound of Theorem 1.10 into the above yields equation (1.33). [

6. Proof of Theorem 1.12

We now prove Theorem 1.12. Our method of proof necessarily differs from the GUE case
of [21], which benefits from the Airy kernel being a locally admissible and good trace-class
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operator (see [4, Section 4.2]). For such kernels, on any compact set D C R, the point process
can be expressed as the following sum:

o0
N0y 23 x,,

i=1
where the X; are independent Bernoulli random variables satisfying P(X; = 1) =1 —-P(X; =
0) = AP. Here, AP are the eigenvalues of the operator 1(D)KA1(D). An application of
Bennett’s concentration inequality yields the desired upper large deviations bound on 4.

Pfaffian point processes possess matrix-valued kernels (see Section 3), and while [31]

describes a such class of kernels whose corresponding Pfaffian point processes can be expressed
as a sum of Bernoulli random variables, no such result is known for the GOE point process.
Instead, we estimate x“CF on intervals by carefully analyzing the closest GOE points to the
boundary of the interval. The result is the exponential upper bound (1.34), which suffices to
establish (2.10), which in turn gives the lower bound (1.11) on the half-space KPZ tail.

Proof of Theorem 1.12. Throughout this proof, we write x := x“°F for brevity. Fix ¢ > 0 and
8 € (0,2/5). In what follows, we will write ¢ := ¢(c¢) to denote a positive constant depending
only on the parameter ¢ whose value may change from line to line. We first consider B ()
for k > 2.

As usual, let (a; > a; > ...) denote the GOE point process, and let (A; < A, < ...) denote
the eigenvalues of the Airy operator. Define

my = sup{m :a, > —(k—1)¢}, my:=sup{m:a, > —k{}, and
ki ==sup{n: —r, > —(k— )¢}, ky:=sup{n:—Ar, > —kl}.
Note that x (Bi(£)) = my — m;. Theorem 1.6 gives us
2
Elx(BeO)] = (" = (k= DY) + fi, (6.1)
g
where f| = fi(k, £) = (D1(k€)— Di((k—1)£)); note that f} is bounded in k and £. By Taylor’s
theorem, we have

3
K2 —k—1)7?% = E(k —DY2 4+ Ry, (6.2)

where 0 < R < %. By Corollary 3.5, we have
E[x(Br()] =k — ki + f2, (6.3)
where f, := fa(k, £) is bounded in k and £. Define the positive constant

-1
e (L 2

w=qgl)=c|—(k—1)""+ —R ,
T 3

which is bounded above uniformly in k, and satisfies

o > ¢k~ 6.4)
Then substituting (6.2) and (6.3) into (6.1) yields

el = cplka — k1) — f3,

where f;3 := f3(k,£) is bounded in k and £. The above display along with the relation
X (B (0)) = my — m gives

{x(Br©) = E[x(Bu®)] = £’} = {my —my = (1 + &)(ka — k1) + f3}. (6.5)
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It follows that the event { X (B (0) — E [x(Br(£)] > ct?/ 2} is contained in the event
Ck Ck
{m2 = ko + St =k + f} U fmi = = S — k) (6.6)

The next two claims provide an upper-bound on each of the events in the above union.

Claim 6.1. There exist positive constants ¢ := c(c), k = k(c, §), and £y := Ly(c, §) such that
for all £ > £y, we have

P (mz > ky + %"(k2 k) + f3) < kexp(—« @0)'7) | 6.7)

Proof of Claim 6.1. Since —a,,, < k£, Theorem 1.5 yields
(] - 8))\1112 — k¢ = CgGOE s

for any ¢ € (0, 1). Let k3 = k, + %(kz — ki) + f3. Since A; < A; if and only if i < j, the
previous display gives us

{ma = ks} S {(1 = &)hiy — kt < CJO), (6.8)
for any ¢ € (0, 1). Corollary 3.5 allows us to write

2 3/2

ky = 3. ((k = D)7 + Ci((k — 1Y), and (6.9)
14
2 3/2

ky = 2~ (k07" + Ca(kb), (6.10)
T

where sup,._ o{|C1(x)], |C2(x)|} < 1. Then, from Proposition 3.4 and the definition of k3, we
compute

My = (60 + 2 (@02 — k=100 + 1)

_ 2/3
= (k0) (1 + %"(1 _ (le>3/2) + (ke>—3/2f4> , 6.11)

where f, := fi(k, £) is bounded in k and £. Since the function g(x) := x*/3

function in x, (6.11) gives us

is an increasing

o\ 2/3
Moz kO(14+5) 6.12)

for all £ > 1 (and recall that we have fixed k > 2). Substituting (6.12) into (6.8), we find

my > ks) © {CSOE > ke(u _ 8)(1 n %")2/3 _ 1)} . (6.13)

2/3
We now show that there exists some ¢ € (0, 1) such that k( (1 —&)( 1+ %") — 1) can be
bounded below by a positive constant ¢ := ¢(c) uniformly in k € Z>,. Define

&= Gle) = ((1 - s)(l + %")2/3 — 1) .

It is clear that from (6.4) that for any fixed k, there exists ¢ > O such that ¢; > 0. Thus, we
need only consider k arbitrarily large. We show that there exists a positive constant K := K(c)
such that for all k > K(c), there exists ¢ := e(k, ¢) > 0 such that ¢,(¢) = k~'. Towards this
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end, using (6.4), we find the lower-bound

1 +¢ 14¢
ol % o all (6.14)

23 = ~ 23"
1 k—1)-1/2
(1 + %) (14 etk —1717)
That ¢ < 1 is trivial. Thus, it suffices to show that there exists a positive constant K := K(c)
such that
K< (1+8k—1)7'7?) 1, (6.15)

for all k > K (for then it will follow that there exists (k, ¢) € (0, 1) such that & = k~!, for
all k > K). Let K := K(c) be large enough such that é(k — 1)~'/2 < 1 for all k > K. Then,
by Taylor’s theorem, we have

23

23

(1+etk— 177 1= %é(k— D24+ 00" > étk—1)712, (6.16)

where the last inequality holds for K := K(c) large enough and all K > K (and the ¢ on the
right-most side differs from the other ¢). Now, choose K large enough such that, for all k > K,
we have k~' < é(k — 1)7'/2. Then, from (6.16), it follows that (6.15) holds. Thus, we may
take

¢ = min{l, minkc
{,ksK Kt

which depends only on c.
Now, let kg = ko(c) € Z= and gy := go(c) € (0, 1) be such that ¢ = ¢, (). Thus, from
(6.13), we have

{my = ks} C{Coo" = ¢} (6.17)

Eq. (6.17) and Theorem 1.5 then give the final result: there exist positive constants x := k(c, §)
and Lg := L(c, 8) such that for all ¢ > £;, we have

P (m2 > ko + %"(k2 - k1)> <P (CS)OE > Ez) < kexp (—k (G0)'7) .

This concludes the proof of Claim 6.1.

Clailp 6.2. For any n > 0, there exists a positive constant Lo == Lolc, n) such that for all
£ > Ly, we have

P (m1 <k — %k(kz - kl)) <exp (—ne?) . (6.18)

Proof of Claim 6.2. Fix n > 0. Let the left-hand side of (6.18) be denoted by P. By definition
of my, we have m| = x (—(k — 1)¢£, 0o0). Corollary 3.5 gives the expression

my —ky = x (—(k — D, 00) —E[x (=(k — DL, 00)] + g1,
where g; := g;(k, £) is bounded in k and ¢. This expression allows us to write P as
¢
P=P(x(~(k=1t.00) ~E[x (<= DE.co)] = =S (o —k)+g1) . (6.19)
From Egs. (6.9), (6.10), and (6.2), we may write

2 (3
ko — ki = ey (5(](— 1)1/2+Rk>53/2+82,
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where g, := g»(k, £) is bounded in k and ¢. The above along with (6.4) yield the bound
3 _
— Stk ki) + g1 = =TSk = D2+ RO 4 gy < —CEP, (6.20)

where g3 := g3(k, £) is bounded in k and £ and C:=C()isa positive constant; and the last
inequality holds for all £ > L, where L := Lo(c) is sufficiently large. Substituting (6.20) into
the right-hand side of (6.19) yields

P <P(x(—(k—1)¢t,00) —E[x (—(k — )¢, 00)] < —C"?) . (6.21)

We may now apply Eq. (1.32) of Theorem 1.11: in the notation of this theorem, we take c to
be C, s to be £, and 1 to be the same n here. Then there exists a positive constant Lo := Lo(c, n)
such that for all £ > Lo, we have P < exp (—n€*?) as desired. This concludes the proof of
Claim 6.2. O

We are now ready to conclude the proof of Theorem 1.12. Define
P =P (x(B(0) — E[x(Br(O)] = ct7?) .
From (6.6), we have
55P<mz 2k2+%(k2—k1)+f3) +P(ml <k — cEk(kz—kl)) .
Substituting the bounds obtained in (6.7) and (6.18) gives
P <k exp (—K(Eﬂ)l_‘s) + exp (—77€3/2) < exp (—Cﬁl_‘s) ,

where the first inequality holds for any fixed n > 0 and all £ > Ly, where Ly := Lo(c, 8, ) is
greater than or equal to max{£y, L}. Fixing 7, the second inequality above holds for a (possibly
larger) L, and another positive constant C := C(c, §). This concludes the proof of the result
for k > 2.

Now, if k = 1, take m, defined as in the k > 2 case. Then (6.5) holds with m; = 0, i.e., we
have

{X(Br(0) = E [ (Br()] = et}
= {x(Br(0) — E[x(Br(O)] = ekE [x (Br(O)] + f3}
= {my > (1 + c)ka — k1) + f3}. (6.22)
Then (6.7) finishes the proof for the k = 1 case. [

7. Proof of Proposition 2.2

In this section, we prove Proposition 2.2, thus completing our proof of Theorem 1.4. Here,
we follow closely the method of [21, Section 5]; indeed, many of the computations done there
are adapted here to our case.

Before proceeding, we recall a result describing the tail behavior of a;, which follows the
GOE Tracy—Widom distribution (see [51]). The following proposition is a much simplified
version of a result of [6], where the authors extract precise asymptotics up to the third order
(prior, the asymptotic behavior had been known by studying the asymptotics of the solutions
of the Painlevé II equation).

Proposition 7.1 ([6]). Let a; denote the top particle in the GOE point process. Then
1
P(a; < —s) = exp (—ﬁs3(1 + 0(1))) . (7.1)
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7.1. Proof of the upper bound, Egs. (2.11) and (2.12)

Recall that we defined in (2.9)
1
J5(x) == 7 log(l + exp(T'3(x +5))), and I(x) == exp(—Jy(x))

We will establish an upper bound on Egog []_[,fi, Is(ak)] by deriving a lower bound on
Z,fil Js(ar). To this end, we denote D; := (—XA; — a;)+, where we write x4 = max{x, 0}
for any x € R.

Lemma 7.2. Fix ¢ € (0,1/3). Define 6y = |25%?/3m]. There exist positive constants
So := So(e) and R such that for all s > Sy and for all T > 0,
> 1 4552 %

Joap) > =T [ —(1 —8e)— ) Dy —R|. 7.2
PIRACHES: (1571( £)— Y Dy (72)
k=1 k=1

Proof. We compute
o0 o0 o0
D @)=Y T (—h = D+ (—he —a)-) = Y Ji(—hi — Di), (7.3)
k=1 k=1 k=1

where the inequality comes from the fact that Jy(x) is a monotonically increasing function.
We now divide the sum on the right-hand side of (7.3) into three ranges: [1, 6], (61, 6»), and
[65, 00), where we define

+ —_
3n 2
Here, we recall R(n) from Proposition 3.4, and note that K < oo. Note further that 6; does not
depend on our choice of s, but 8, does, and so we can choose s large enough so that 8; < 6,.
Thus, we take Sy large enough such that for all s > Sy, we have 6; < 6,. The following two
claims establish appropriate lower-bounds on the sum of J;(—A; — Dy) over the first two ranges
of k.

K :=sup{|[nR(n)|}, 6,:=T[4K], 6, = [ (7.4)

n>1

253/ 1—‘

Claim 7.3. Forall s > 0,

o1 23 6
| 3r(4lC+ 1)
E Js(=Ar — Dy) > ET (91s -6 (—2 — kz_l D, | . (7.5)

k=1

Proof of Claim 7.3. Note that for any a € R, we have log(1 + exp(a)) > a. It follows that
Jo(x) > %Tl/ 3(s 4+ x). Using this and the fact that the A; increase in k, we have

01 0 0
1 1
D= D = STy s =y = Dz ST (91@ — ko) — ZDk) . (76)

k=1 k=1 k=1
From Proposition 3.4,

3n(91—§+§)
Aoy < 5

2/3
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Since 6; — 41'1 + % < 4K + 1, (7.5) follows. This concludes the proof of Claim 7.3. O

Claim 7.4. There exists a positive constant Sy := So(€) such that for all s > S,

6r—1 6r—1
> == Do) = < T”3 (1—38)—(91+1)S— > D). (7.7)
k=01+1 k=01+1

Proof of Claim 7.4. Using similar bounds as in (7.6), along with the fact that ; < (3wk/2)*/?
for all k > 6;, we find

6,—1 6r—1 2/3
113 3k
D Sh= Dz ST Y (s — (T) — Dk> : (1.8)

k=01+1 k=01+1

We now bound the following sum with an integral, as the summands are decreasing in k:

0,—1 ( <37Tk>2/3) 6r—1 37z 2/3
S (-(5) )= () e
k=6, +1 2 O1+1
6r—1 2/3
2/2 <£> dz — (6 + s
0 2
3 (37 2/*
=6 —1) §<7) -3 =@+ Ds. (7.9

32

2 1
Note that 0, — 1 > ‘3—” — 5, and thus for s > (4—”) , we have

32 24312
(I—¢) <th-1=<
3

Substituting this bound into (7.9) and then substituting into (7.8) leads to (7.7). This concludes
the proof of Claim 7.4. O

+ 1.

T

Returning to the proof of Lemma 7.2, we substitute the bounds given by (7.5), (7.7), and
Z;fo:ez Js(—xx — Dy) > 0 into (7.3) to obtain

0r—1

3r@k + 1)\
Zl(ak)> T1/3|: (1—3)—9(%) —s—ZDk:|. (7.10)

Recalling 6, := [4K], we note that 6; 3r(4/C + 1)/2)2/ 3 is a constant which can be reg)laced
by a large constant R > 0. Finally, for sufficiently large s > Sp, we have s < 483; and
thus we may make this replacement in (7.10) to obtain (7.2). This completes the proof of
Lemma 7.2. [0

Proof of (2.11) and (2.12) in Proposition 2.2. From (7.2), we have

k]:[uak):exp (—ZJs(au)sexp (—%TW( (1—8¢) — ZDk ))

k=1
(7.11)
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for all s > Sy and for all 7 > 0. Note that for Sy sufficiently large, we have

45/2 (5 ISJTR) 453/2

8S00 + R < 58 W < EGS) (712)

- 157
for all s > Sp. Define Sy, == ZZO:1 Dy. Then (7.11) and (7.12) yield

00 2¢3/2
1 (S, < es60) [ ] Is(a) < exp (—T‘“lss—n(l — ]18)) . (7.13)
k=1

On the other hand, if Sy, > 56y, then there exists at least one k € [1, 8o]NZ such that Dy > &s.
Thus, {Sg, > es6p} C UZO:I{Dk > gs). It follows that

Ecoe []‘[ A(ak)} =E [11 (S < est0) [ ] A(a@} +E [11 (So = es60) [ | A(ak)}

k=1 k=1 k=1

{Dy = es}) ]‘[mak)} :
1 k=1

(7.14)

L0

13255/2
§exp(—T / E(l — 118)) +E|1
k

We split the indicator function as

0o 6o
1 (U{Dk > es}) <1 (U{Dk > es)N{ay = —(1 — e)s}) +1 (@ < —(1—e)s) .

k=1 k=1
(7.15)
Since I;(ay) <1 for all k € Z-, we have that when a; > —(1 — ¢)s,
= 1 LA
[]5@) < L) < <exp(—zesT!). (7.16)
k=1 \/l +exp (T'3(s +ay))
Substituting (7.15) and (7.16) into (7.14) gives
o0
Ecoe |:l_[ Ix(ak):|
k=1
21 — 11e) 1 %
< exp (—TTWSS/Z) + exp (—ESST1/3) P (H{Dk > 8S}>
+ P(a; < —(1 —¢)s). (7.17)

Using (7.1), we have
’;

3 3
Pa; < —(1 — &)s) = exp (—(1 - 8)3;—4 a1+ 0(1))) < exp (—;—4(1 - c£)> . (7.18)

for some constant C > 0 and all s sufficiently large. Now, taking C = max{C, 11} and using
Lemma 7.5, we obtain both (2.11) and (2.12). [

Lemma 7.5. Fixn > 0, ¢ € (0,1/3), and § € (0, 1/4). Then there exist positive constants
So = So(n, &,8) > 0 and K| = Ki(e,8) > 0 such that the following holds for all s > Sy.
Divide the interval [—s, 0] into (28’1—| + 1 segments Q; = [—jes/2, —(j — l)es/2) for
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j=1,..., (28’1—| + 1. Denote the left and right endpoints of Q; by p; and q; respectively.
Define kj = #{k : —A;x > q;}, where (A < Ay < ...) denote the Airy operator eigenvalues.

Then (recalling 6y = |2s%? /3w ), for all j € {1,..., [28_1] + 1}, we have

P(ay; < pj) < exp (—ns3/2) , and

6o
P <U{Dk > ss}) <exp(—ns”?),

k=1
and, assuming Conjecture 1, we have

P(akj < pj) < exp (—K1s3_5) , and

o
P (U{Dk > 8s}> <exp(—Kis*?) .

k=1

Proof. If a;; < p;, then
X (= jes/2,00) < k; .

Corollary 3.5 gives us the following expressions:

2
ki = — (jes/2)* + C, (jes/2) , and
3

2
B [x9OF ([—jes/2, 00))] = o (jes/2)* + Cy (jes/2) ,

(7.19)

(7.20)

(7.21)

(7.22)

(7.23)

(7.24)

(7.25)

where M’ := sup,.o{|C1(x)], |C2(x)]} < oo. It follows from (7.23)~(7.25) that if ax; < p;,

then
X% (Ljes /2, 00)) = E[x % ([ jes /2, 00))]
<kj— % (jes/2Y? = Ca (jes/2)
B (e5)/?
TN
< —Mjesy? + M,
where M > 0 is a constant extracted from the fact that
(=D =P <Vil(G=D= =~V
It follows that

(G =D = )+ C1((j — Des/2) — C2 (jes/2)

(7.26)

PGy, < p) = P (1% (1ps.00) —E[x“F (Ipj, 00))] = ~M /() + M') .

Now, for sufficiently large Sy, we have

M
~Mj(es)? + M = == j(es)

forall j €{l,..., |_28’1-| + 1} and for all s > Sp. Assuming Conjecture 1, we may now apply
Eq. (1.33) of Theorem 1.11: there exist So(e, §) and K; = K(¢, §) such that for all s > S,

M
P(ay, < p;) <P (xGOE (Ipj. 00) —E[x" (Ipj. 00))] < —E\Fj(ss)”)

< exp (K1s375) .
396
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This proves (7.21). Applying (1.32) instead of (1.33) yields (7.19) (for all s > Sy, for some
So = (So(n, €, 8)).

Towards showing (7.20) and (7.22), assume s is large enough so that Ag, < s. We will now
show that

b |72£71‘|+1
Utbi=esic (J fa, <pj}- (7.28)
k=1 Jj=1

First, choose 1 < k < 6 and assume that Dy > es. There exists 1 < j < [2¢7"] + 1 such
that —A; € Q;_;. The left boundary point of Q;_; is g;, and since Dy = —A; — a; > &5, we
have a; < —A; — &s. Since —A; > ¢, by definition of k;, we have k; > k. Thus, a; > ay; . It
follows that
es
>
where the last inequality uses the fact that Akj, A € Qj_1, and thus 0 < Akj — M < &s5/2.
Hence, the distance between ay; and —Akj is greater than or equal to &s/2, from which it
follows that a; < p;. This establishes (7.28).

Assuming Conjecture 1, we may combine (7.21) and (7.28) to obtain

a; S % < —Ap — &5 < —hy; —

b [2e-1]+1
P(U{Dk > es}) < Y Play <pi) < ([2e7" ] + 1) exp(—Kis*7) . (7.29)

k=1 i=1

For Sy := So(e, 8) sufficiently large, we can modify the constant K| := K/(g, §) to absorb the
constant [2e~"| + 1. This establishes (7.22). On the other-hand, from (7.19) and (7.28), we
obtain

o [2e-1]+1
P (U{Dk > 8s}> < Y Play <pi) < ([2e7" ]+ 1) exp(—n's’?) (7.30)
i=1

k=1
for any n° > 0. For any given n > 0, we may choose n’ sufficiently close to 0 and
So == So(7, €, 8) sufficiently large such that

([2e7'] + 1) exp (=n's¥?) < exp (—ns’?).

Thus, we have (7.20). This completes the proof of Lemma 7.5. [
7.2. Proof of the lower bound, Eq. (2.10)

In this section we establish a lower bound on IE[]_[;‘;1 I;(a;)] by deriving an upper bound
on Z,fi, Js(ag). The result will lead us to (2.10) of Proposition 2.2, thus completing the proof
of Theorem 1.4. We begin with an algebraic inequality from [21].

Lemma 7.6 (/21, Lemma 5.6]). For all a > 27 and all x > «/3a, we have
(a+x)*P > a4 x13, (7.31)

The following lemma gives the needed upper-bound on Z,fil Js(a;) when a; > —s (see
Claim 7.10).
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Lemma 7.7. Fix Ty > 0. There exist positive constants Sy and B := B(Ty) such that for all
e €(0,1/3), for all s > Sy, and for all T > Ty, we have

= 1
D @) < 5Ll + ). (7.32)
k=1
where
4x5/2 x3/?
L7 =T =—01+3 2x — B P
7,6(X) 1577( +3¢e) + 2x +3(1_8)3/2

30 x4 4
tWrd—eot T Tna—ep

Proof. Recall from (2.9) that Jg(x) is a monotonically increasing function, and recall from
(1.14) that ax < —(1 — &)A, + CSOF, for all k € Z-o. It follows that

D @) < ) I (1 = e + ) = (D + (D) + (1), (7.33)
k=1 k=1

where (1), (IT), and (IT1) equal the sum of J, (—=(1 — &)Ax + CSOF) over all integers k in the
intervals [1, 611, (6, 65), and [6;, co) respectively, and we define

o) = ’74 sup nIR(n)|—‘ , and

nEZ>0

2=

r(—ep2 2

where R(n) is defined as in Proposition 3.4. Since the A; are strictly decreasing in i, we have

Ty (=(1 = &)y + CSOF) < J, (—(1 — &)2 + CSOF)

. "2(s+C§OE)3/2 1“

for all k > 1. Using this and the inequality log(1 + exp(a)) < a + 7 /2 for any a > 0, we

obtain
!

~ 1 0
(1) < 0]J; (=(1 — &)ag + CEOF) < 3 (9{T1/3 (s — (1 =& + CEF) + %) . (7.34)

Terms (INI ) and (171 ) are bounded in the following two claims.

Claim 7.8. For all s > 0, we have
~ 4 CGOE 5/2
2(i1y < 713 (HS T
157
w05 —06))
+ 2 .

3 3 23 5/3
(14 38) + (2 —6))(s + CIOF) — S <7> ()

(7.35)

Proof of Claim 7.8. Recall the constant KC, defined in (7.4). It follows that for k € (9], 00),
we have

IR =

=

IA

1/4.

ke
2=
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Combining this with Proposition 3.4, we find

1 2/3 A
A12(371(1( - |R(k)|)) Z<37T(’<2 2>) ' (7.36)

Using this, the inequality log(1 + exp(a)) < a + 7/2 for any a > 0, and the monotonicity of
Js(+), we obtain

!
051

~ 1
(=3 Y (1" r0+3). (7.37)
k=6 +1
where
GOE 37z~ 3) 7
fi@) =5+ COF — (1 —e) | —5—2

Since fy(z) is a monotonically decreasing function of z, we may bound the sum in (7.37) with
an integral:

051

_ Z <T1/3 - (k) + )S%(TIB/ £(2) dz _,_M) (7.38)

k 9/+1

We now compute

0, | 31 — 3\ 23 1\
A dz = (s + CZOF) <9 —§> _ X . &) (%) <9£_5>

2

GOE\3/2
GoE, 2(s + C7) 3
<@GE+C )( 3r(l— e +2>
3(1 —¢) 2/3 2(s + COOE)3/2 5/3
< ( 3 (1 — g)3/? )
As + CSOE)5/2 3 cor
= Tsa—an TG
4(s + CGOE)3/2 3
= %(1 +36)+ 2 (s +C7F) (7.39)
and
1 / 2/3
01 1 91 37‘[ zZ— l
ﬁ f5(@) dZE(S-I—CSOE)(@{—E)_/; ( (2 3) dz
2 2
1\ 337\’
P 1

Substituting the bounds from (7.39) and (7.40) into (7.38) yields the upper bound on (INI ) in
(7.35). This completes the proof of Claim 7.8. [

Claim 7.9. There exists a positive constant Sy > 0 such that for all s > Sy, we have

GOE)3/4
(111)<1< 3(+C) . ) (7.41)

2\Vr (1—e)p Tr(l — &)
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Proof of Claim 7.9. Using the inequality log(1 + z) < z for all z > 0, we obtain

1
Jo (—(1 — &) + CFF) < 5 oXP (T3 (s — (1 — &)rp + COF)) (7.42)
Recalling the lower bound on A; from (7.36) and the definition of f;(z) from (7.37), we find
—
(I11) < 5 Z exp (T (k) (7.43)
k=6,

For all k > 60, we have

37, — H\ "
S+C§OE<(1_8)<#) )

2

Since f;(z) is a monotonically decreasing function, we have f,(k) < f,(6;) < 0 for all k > 6).
Thus, for all k > 0] + /365, Sy sufficiently large, and for all s > Sy, we may write

L\ _ L\ o 173
fik) < (1—e) (3”(9%) %@) 5—(1_s)<3”("2 92)> |

(7.44)

where the last inequality uses (7.31) with

3 1 3
a;=7”<9;—5), xi= (= 6))

(So need only be large enough so that a and x as above satisfy the conditions of Lemma 7.6
for all s > Sp). It follows from (7.44) and f;(k) < O that

1, for k € [0}, 6 + /36;
Tl/3 N 173 4
exp( fS(k)) = exp (—(1 —&) (—37[(2 02)) ) , forke [92’ + 36/, oo) » (745

for Sy sufficiently large and for all s > S;. From (7.43) and the above, we find that for S
sufficiently large and all s > S,

20Ih < Y exp(TRRM)+ DY exp (T £(K)

ke 05.65-+/363 ) k=03+./30)
0 1/3
3n(k — 6))
<1+ ,/36, —(1—g) | ———*&
<1+ b + Z exp( (1 s)( >
k=0,++/30"
o0 3 1/3
<1+ 39§+/ exp(—(l—s)TW(%) dz
0
Y YT
a 20 Tr( —e)
3 CGOE 3/4 4
5\/j(s+ e . (7.46)
T (1 —¢g)4 Tn(l —¢)?

This completes the proof of (7.41) of Claim 7.9. O
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We now return to the proof of Lemma 7.7. Define the bounded, positive constant

3 3 2/3
B= <7”) 0) + (1 =)o) -

Then substituting the bounds given by (7.34), (7.35), and (7.41) into (7.33) yields

> 4(s 4 CGOE)3/2 70,
23 @) < T (%(1 + 3¢) 4 2(s + CO9F) — B/> + 22 (7.47)
3/4
3 (5 +C9%) 4
= . 7.48
+ \/; (1—e)/* + Tr(l —¢)3 (7.48)
Now,
7.[9/ - 2 (S + CGOE)3/2 § _ (S + CSGOE)3/2 N 3_7.[ (7 49)
2 37 (1 — )32 2 3(1 — )32 4 :

Taking B := B’ — 1/? yields (7.32). O
O

Proof of (2.10) of Proposition 2.2. In what follows, we fix ¢ € (0,1/3), § € (0,1/4), and
To > 0. We begin with two claims.

Claim 7.10. There exist k := k(e,8) > 0 and Sy = So(e, §, Ty) > 0 such that, for all s > Sy
and T > T,

1/3.5/2
Ecor [11(5111 > —s)l_[l(ak):| (1 — 2k exp (—«s'"?)) exp (—%(1 + 98)) :

(7.50)

Proof of Claim 7.10. Negating both sides of (7.32) and then exponentiating yields

o0
1
l_[ I(a;) > exp <_§£T,g(s + CSGOE)) )
k=1
Since L1 .(x) is monotonically increasing, we may bound

= 1
Ecor |:]l(a1 > —s)l_[l(ak):| > IP’(al > —s, CEGOE < Slfa) exp <_§£T,s(5 +S18)) )

k=1
(7.51)
Take Sp > 0 large enough so that for all s > S,
453
Lro(s+57°) < T1/3 (1 +9¢). (7.52)

From Theorem 1.5, there exist x = (¢, ) and a (potentially larger) Sy such that. for all
s > 8o,

P(CI% (') 1 — k exp(—ks'~?).
Furthermore, for large enough Sy, we find from (7.1) that for all s > Sy,
1
P(a; < —s) <exp (_ﬁs3(1 +0(1))> < KeXp(—Ksl_za),
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Thus, for large enough Sy, we have
P(a; > —s, CIF <5'7%) > Pla; = —5)+P(CIF < s'%)—1 > 1-2k exp (—ks' ) .

Plugging this and (7.52) into (7.51) yields Eq. (7.50) of Claim 7.10. [

Claim 7.11. There exist constants K, := K»(Tp) > 0 and Sy := Sy(¢, 8, To) > 0 such that for
all s > Sy, we have

Ecok []1(:111 < —s) ]_[ I(ak):| > exp (—K»s?) . (7.53)

k=1

Proof of Claim 7.11. Define the parameter L := 1375, and note that L € (3, 4]. Let J denote the
interval [—s%, —s). We seek an upper bound first on Zake:; Js(ax) and then on Zak<,sL Js(ag).
Since J(-) is monotonically increasing, we obtain the following upper bound by replacing all

the a;’s inside the interval J by the right endpoint s of the interval:

1
D @) = xOFQ (=) = 51 @) log 2. (7.54)
ey
Next, using Theorem 1.12, there exist C := C(g, §) and Sy := Sp(¢) such that for all s > S,
we have

x9FQ) < E[xF Q)] + s’ (7.55)

holds with probability greater than or equal to 1 — exp(—Cs?). In what follows, we will write
C to denote a positive constant independent of ¢ € (0, 1/3) and § € (0, 1/4) (but may depend
on Tp) whose value may change from line to line. Then from Theorem 1.6, we have for large
enough s

2
E [x“" Q)] = 3—(s3”2 — 52 +D(s") — Dy(s) < Cs?H/2. (7.56)
T
Substituting this into (7.55), we may deduce that
> J@) < CstP (7.57)
ag€J

holds with probability greater than or equal to 1 — exp(—Cs?).
It remains to bound the sum ) L Js(ax), which we now decompose into two sums:

a <—s
> Ji@) = (A)+ (B), where (7.58)
ag<—sk
W= > @, ®= Yy @) (7.59)
(k: ap<—sL, rp<sl) {k: ap<—sL, rp>sL)

Using the bound log(1 4+ a) < a for all a > 0 gives
1 1
Js@) = S exp (T'7 (s = s%)) < Sexp (=(1 = )T'Ps)
for a; < —s&, Sy := Sy(e, §) large enough, and all s > Sy. Corollary 3.5 shows

2
#k:a <st) = 3—s3L/2 +Ci(sh) < csPH2.
T
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Thus, for large enough Sy, we have
1
A) < 5CS3L/2 exp (—((1 — )T *s%)) < 57 (7.60)

We now bound (B). From monotonicity and (1.14), we have Jg(ay) < Js
(=(1 = &)rx + CIOF), where CZOF is as defined in Theorem 1.5. We now employ Theorem 1.5,
taking § and & as our variables instead of the s and & in the notation of the theorem to avoid
confusion (though we take the ¢ in the statement of Theorem 1.5 to be the same as our ¢ here).
With § = s3+% and § = 2(%5/2), Theorem 1.5 implies that there exist ¥ := (g, 8) > 0 and
So := So(e, 8) > 0 such that for all s > S,, we have

P (CSOE < s3+%) > 1— kexp(—ks’) .

Now, for large enough S, we have s + §3t5 < (1 — &)st. Since st < XA in (B), we have for
large enough S

P|@®B) < Z L ((L=g)s" —a) —s) | = 1 —kexp(—ks?). (7.61)

Ae>sk
The bounds in (7.60), (7.61), and (7.67) of Claim 7.12 (given below), as well as the bound
3L/4 < 3, we find that for Sy large enough,
P((A)+ (B) < Cs’) > 1 —kexp (—ks°) (7.62)
Combining this bound with the bound in (7.57) yields
P(A) > 1 — exp(—Cs?) — k exp (—ks?), (7.63)
where A == {77, Jy(ax) < Cs’}. We then obtain

EGOE |:]1(a1 < —S) 1_[ I(ak):| > P ({a1 < —S} N .A) exp(—Cs3) . (764)

k=1

We finally estimate, for a constant K, > 0 and for large enough Sy,

P({a = —s}nA) = Pla < —s) + P(A) - 1

> exp (—s”) — exp(—Cs”) — k exp (—«s”)
> exp (—C's), (7.65)
where the first inequality uses P(A N B) > P(A) + P(B) — 1 for any events A and B, and

the second inequality uses (7.1) and the lower bound in (7.63). Substituting (7.65) into (7.64)
yields (7.53). This concludes the proof of Claim 7.11. [J

We may now complete the proof of (2.10) of Proposition 2.2 by substituting (7.50) and
(7.53) into

Ecoe []‘[ 1(ak)} = Ecok {n(al > —s)]"[l(ak)} + Ecok [ual < —s)]‘[l(a@} . O

k=1 k=1 k=1
(7.66)
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Claim 7.12. Fix e € (0,1/3), § € (0,1/4) and Ty > 0. There exists a positive constant
So := So(e, 8) such that for all s > Sy, we have

L (=)t — ) —5) < CsPHA (7.67)

Ag>sk

Proof. For sufficiently large s, (3.15) implies that

2 3
{k:ae > st} c {k:k>§(sL)3/2—Z}. (7.68)
This gives
YoL(A=a6t—rm—s) = D (U —e)t—r)—s). (7.69)
ae>sL k>%s3L/2,%

2 (3L/4

To simplify the calculations that follow, we denote 6 == =s*/> — 3 and 6} := 6y + ,/ 2

Note that for Ay > 6y, we have (1 — &)(s® — Ax) — s < O for sufficiently large S;. We then
use the fact that, for x < —s, we have Jy(x) < %log 2. This is the bound we take on J,(-) for
k € [6o, 6)].

For k > 96, we recall the inequality log(1 + z) < z for z > 0, which gives

T —e)(s" = d) —s) < %exp (A =aT'(s" = 1) (7.70)

Define k = k — }1 + R(n) and k' := k — 6y, and note that k > 6, for k > 6;. Then Taylor’s
theorem yields

37 3\ 37\
L _ N2/3
— = =(6+= —(=k) <-cwi&). 7.71
s k<2(o+4)> (2)_ ) (7.71)
Now, substituting the bound given in (7.71) into (7.70) yields
1log2 kel6,0/1NZ
L1 —e)st =) —s) = {2 % o Kl BINZ g )
iexp(—C(l—s)T/(k)/) k e (6),00)NZ
From this bound, we have
L 1 /
D I (=)™ =) —5) < (0 — o) log2
)Lk>SL
1
+5 ) exp(—C—e)T'A®E)H) (7.73)
K'>05—0
1 3L/4
< —s og2 4 ——— 7.74
= 27Ts og +(1—8)T1/3 ( )
< Cs34, (7.75)

where the second-to-last inequality follows by bounding the sum with an integral. This gives
the claim. [J
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