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Recently Burkhardt et al. introduced the k-checkerboard random matrix ensembles,
which have a split limiting behavior of the eigenvalues (in the limit all but k of the
eigenvalues are on the order of

√
N and converge to semi-circular behavior, with the

remaining k of size N and converging to hollow Gaussian ensembles). We generalize
their work to consider non-Hermitian ensembles with complex eigenvalues; instead of
a blip new behavior is seen, ranging from multiple satellites to annular rings. These
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results are based on moment method techniques adapted to the complex plane as well
as analysis of singular values.

Keywords: Random matrix ensembles; singular values; checkerboard matrices; limiting
spectral measure; split limiting behavior; joint density.
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1. Introduction

1.1. Background

Random matrix ensembles have been studied for over a hundred years [21]. The
eigenvalues of these ensembles model many important and interesting behavior,
from the waiting time of events to the energy levels of heavy nuclei to zeros of
L-functions in number theory; see for example the surveys [2, 5, 18, 24, 33, 34] and
the textbooks [25, 39, 42, 47].

There are many questions one can ask about these eigenvalues. This paper is a
sequel to [15]. There, in the spirit of numerous previous works, the authors inves-
tigated the density of eigenvalues of some highly structured ensembles. One of the
central results in the subject is due to Wigner [50–54], which states that the dis-
tribution of the scaled eigenvalues of a typical real symmetric matrix converges, in
some sense, to the semi-circle distribution. However, if the real symmetric matri-
ces have additional structure then other distributions can arise; see for example
[2, 4, 6–8, 10–14, 28–32, 35–41, 44].

In all those examples the limiting distribution has just one component. Different
behavior is seen in the limit as N → ∞ of the k-checkerboard N × N matrix
ensembles of [15] (see also [16, 17]), described later in Definition 1.1. There, all but
k of the normalized eigenvalues converge to a semi-circle centered at the origin;
however, there are k eigenvalues which diverge to infinity together. Further, these k
blip eigenvalues converge to a universal distribution, the k-hollow GOE distribution
(obtained by setting the diagonal of the k × k GOE ensemble to 0).

Below we describe the ensembles studied in [15] and discuss our generalization
(see Definitions 1.8 and 1.10). In particular, we find ensembles where there can be
multiple blips or satellites orbiting the bulk of the eigenvalues, as well as a ring of
eigenvalues around the central mass; Fig. 1.

In the next subsections, we define the ensembles we investigate and state our
results. Unfortunately many of the techniques used for related ensembles are not
applicable here, and thus we spend some time describing the needed tools and
approach.

1.2. Results

Random matrix ensembles with real entries see markedly different behavior between
asymmetric and symmetric entry choices — for example, the symmetric ensembles
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Fig. 1. Two numerical examples of distributions which can arise from a generalized k-checkerboard
ensemble. Left: A collection of satellites. Right: A ring of eigenvalues.

are Hermitian with real eigenvalues, and this need not hold for asymmetric ensem-
bles. Allowing matrices with complex entries, we also find differences between the
asymmetric and symmetric (not-necessarily Hermitian) ensembles in the joint den-
sity formulas.

Recall that the joint density function for singular values returns the probability
that any given matrix has a certain N -tuple as its singular values.

Suppose M is a random N ×N matrix (for example, real asymmetric, complex
symmetric, etc.). The joint density function ρN for the singular values satisfies∫

RN
≥0

F (x1, . . . , xN )ρN (x1, . . . , xN )dx = E

∑
{σ2

1 ,...,σ2
N}∈λ(M∗M)

F (σ1, . . . , σN )

(1.1)

for any test function F , where the right-hand side sum is interpreted as over all N !
orderings of the N eigenvalues of M∗M (and the σj are non-negative).

We list the available singular value joint density functions for complex asym-
metric and symmetric ensembles, see for example [1, 25, 48]:

Complex asymmetric Gaussian:

ρN (x1, . . . , xN ) = c′N |∆(x2
1, . . . , x

2
N )|2

N∏
j=1

|xj |
N∏

j=1

e−|xj|2/2, (1.2)

Complex symmetric Gaussian:

ρN(x1, . . . , xN ) = cN |∆(x2
1, . . . , x

2
N )|

N∏
j=1

|xj |
N∏

j=1

e−|xj|2/2, (1.3)
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where ∆ denotes the Vandermonde determinant, and the complex Gaussian random
variables have mean 0 and variance 1. Entries in matrices from the asymmetric
ensemble are iidrv, while entries in the symmetric ensemble are iidrv in the upper
triangle and the diagonal.

Note that the joint densities for singular values differ between the symmetric
and asymmetric ensembles. In the ensembles that follow, we will chiefly consider
symmetric matrices, and in doing so highlight the consistency found instead with
the statistics we study for symmetric and asymmetric ensembles.

1.2.1. Checkerboard ensembles

We investigate extensions of the structured “checkerboard” ensemble from [15] into
the complex regime. In that paper, the authors investigated a Hermitian ensemble,
with real limiting eigenvalue distribution having almost all eigenvalues in a semi-
circular mass at the origin, referred to as the “bulk” and a vanishing percentage
of eigenvalues, whose distribution is described explicitly, that moves off to infinity
and is referred to as the “blip”. (We adopt this terminology of bulk and blip where
appropriate.)

The first complex analog we investigate is constructed as follows.

Definition 1.1. Fix k ∈ N and w ∈ C. Then, for k |N , the N × N complex
symmetric (k, w)-checkerboard ensemble is the ensemble of matrices A with entries

aji = aij =

{∗ if i �≡ j (mod k),

w if i ≡ j (mod k),
(1.4)

where ∗ ∼ X + iY are selected such that X , Y are iidrv mean 0 variance 1/2 real
random variables. When we set w = 1, or the value of w is clear, we will just refer
to the complex symmetric k-checkerboard ensemble.

In contrast, the real symmetric ensemble studied in [15] uses real random vari-
ables for aij = aji, and the Hermitian ensemble studied uses complex random
variables with aij = aji. In these situations, Hermiticity implies the resulting eigen-
value distributions are real. Our matrices are not necessarily Hermitian, and thus
the eigenvalue distributions that arise are on C. Restricting our attention to complex
symmetric rather than the fully asymmetric case turns out to not make a difference
for several of the following results. We have chosen to require symmetry, however,
to highlight the difference between requiring symmetric structure in the real and
complex settings (real symmetric and real asymmetric ensembles have very different
behavior), and also to contrast with the differing behavior of complex symmetric
and complex asymmetric Gaussian ensembles discussed above. For simplicity, we
prove most of our results below for w = 1 as was done in [15] — the extension to
other values of w is relatively straightforward.

In the paper [15], studying the Hermitian version of this ensemble, the semi-
circular bulk was analyzed with the method of moments, but this could not be
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used for the blip as the eigenvalues were growing too rapidly. The blip existence
was established by a perturbation argument using Weyl’s inequalities (available for
Hermitian matrices), and the distribution of the blip was analyzed using a polyno-
mial weighting function.

None of these techniques are directly applicable for non-Hermitian ensembles
with complex eigenvalue distributions. Complex polynomial weighting functions are
not as well behaved — for example, they are far from non-negative. Non-Hermitian
ensembles also do not enjoy perturbation results such as Weyl’s inequalities, as the
spectra can be quite unstable due to the presence of pseudospectrum [47].

The method of moments also runs into serious difficulties in the complex regime.
The use of the standard (real) method of moments is two-fold. Appropriate bounds
on the moments imply convergence of the measures to a limiting measure (e.g.
via the Carleman continuity theorem), and the moments also uniquely determine
the limiting distribution. The analogous problem for complex moments uses mixed
moments of the form ∫

zr1zr2dµ. (1.5)

However, these mixed moments do not have a straightforward relation to the matrix
entries, as is available via the eigenvalue trace lemma in the real case and for
moments of the form ∫

zrdµ. (1.6)

which we refer to as “holomorphic”. Although these holomorphic moments can be
computed easily via the eigenvalue trace lemma for spectral measures, they cannot
in general be used to characterize complex distributions. For example, all holomor-
phic moments of any angularly symmetric distribution will vanish. Ultimately, this
is because the space of real polynomials is dense in various function spaces (the
Stone–Weierstrass theorem) and similarly for complex polynomials in z and z, but
holomorphic polynomials in z do not enjoy such properties [47].

Our analysis of the complex eigenvalues will thus employ markedly different
techniques. As a proxy for the complex eigenvalues, we first study the associated
singular value distributions, and explicitly describe the split limiting behavior in
this context.

Definition 1.2. Given an N × N complex symmetric k-checkerboard matrix A,
define the bulk squared singular spectral measure as

νs2

A,N (x) =
1
N

∑
σ eigenvalue A∗A

δ
(
x− σ

N

)
. (1.7)

Note that σ ≥ 0 is a singular value of A if and only if σ2 is an eigenvalue of
B := A∗A.

Theorem 1.3. Let AN be a random sequence of N × N complex symmetric k-
checkerboard matrices. Then as N → ∞, νs2

AN ,N converges almost surely to the
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quarter-circular probability distribution (after renormalizing the total measure so
that the distribution integrates to 1) of radius R = 2

√
1 − 1/k and circle center at

0, supported on [0, R].

We also give an explicit description of the singular value blip distribution.

Definition 1.4. The empirical blip square singular spectral measure (EBSSSM )
for a matrix A is

µs2

A,N :=
1
k

∑
σ an eigenvalue of A∗A

fn(N)

(
k2σ

N2

)
δ

(
x− 1

N

(
σ − N2

k2

))
, (1.8)

where fn(x) is the polynomial weighting function

x2n(x− 2)2n (1.9)

and n(N) is a monotonically growing function of N that tends to ∞ such that
24n(N) = o(N); for example, n(N) = c logN with c a small enough constant suffices.

Note that σ an eigenvalue of A∗A is equivalent to
√
σ being a singular value

of A. As in [15], the weight function f weights the squared singular values in the
blip roughly 1, and weights the squared singular values in the bulk roughly 0.
The normalization factor 1/N ensures that we will find finite moments, i.e. the
fluctuations of the squared singular values about the blip are of order N .

We can explicitly describe the blip distribution for the squared singular values,
and recall a distribution studied in [15, Theorem 1.9], which also contains a few
images of examples for small k.

Definition 1.5. Fix k ∈ N. Then the k× k hollow Gaussian Orthogonal Ensemble
(GOE) is the ensemble of k × k matrices A with entries

aji = aij =

{∗ if i �= j,

0 if i = j,
(1.10)

where ∗ ∼ X are iidrv mean 0 variance 1 real normal random variables, and the
entries in the upper triangular half A are all iidrv.

When k = 2, the empirical spectral measure is Gaussian, see [15, Proposi-
tion 3.18]. In general, standard universality implies that the limiting spectral distri-
bution only requires the random variables to be mean 0 and variance 1. Furthermore,
we use the term hollow as a qualifier to any ensemble (for example, complex sym-
metric) where we have replaced the entries aij with 0 when i ≡ j (mod k), with k

is clear from the context.

Theorem 1.6 (Blip distribution for squared singular values). The empir-
ical blip squared singular spectral measure of a complex symmetric k-checkerboard
ensemble converges almost surely to the measure with rth centered moments equal
to the rth centered moments of the empirical spectral measure of the k × k hollow
Gaussian Orthogonal Ensemble, scaled by a factor of (

√
2/k)r.
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Fig. 2. Normalized singular values of 100×100 complex symmetric 2-checkerboard ensemble, 2000
trials. Note the bulk and blip. This has not been re-scaled to display a quarter circle rather than
a quarter ellipse.

Note that this implies that the blip distribution of the squared singular values
converges to the distribution of the hollow GOE scaled by

√
2/k. This is visualized

in the k = 2 case in Fig. 2.
We also describe the bulk and blip behavior of the eigenvalues. In the preceding

two results, analysis of the singular values was done via the method of moments,
taking advantage of the Hermiticity associated with singular values. Since Girko in
1984 [27], however, work on such non-Hermitian ensembles has proceeded through
the log potential and his Hermitization trick, with the limiting circular law dis-
tribution of fully random complex matrices being fully proven by Tao and Vu in
2010 [49]. In analogy with the real method of moments, continuity of the log poten-
tial, closely related with the Stieltjes transform, plays a surrogate role to moment
continuity theorems.

As short-hand, we refer to the ensemble with iidrv mean 0 variance 1 complex
entries as the complex asymmetric ensemble. Associated measures that arise below
are denoted with a superscript “asym”. Similarly, measures that arise below in
association with a complex symmetric checkerboard ensemble will be denoted with
a superscript “check”.

We also proceed with the log potential and Hermitization, and will show that,
up to an explicit scaling factor and an assumption on the least singular values, our
structured checkerboard ensembles also have a bulk that converges to a circular
law.

Theorem 1.7 (Eigenvalue Bulk–Complex Symmetric k-checkerboard).
Consider a sequence of N × N random matrices AN from the complex symmetric
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k-checkerboard ensemble, with normalized spectral distribution µ 1√
N

AN
. Assume

appropriate control of the least singular values as in Assumption 2.7. Then, as
N → ∞, we have almost sure convergence µ 1√

N
AN

→ µcirc
R for µcirc

R the uniform

measure on the disk centered at the origin with radius R :=
√

1 − 1/k.

See Fig. 1 for a visualization of the bulk behavior in a more general setting. (The
bulk corresponds to the large circular mass in the center.) This involves a careful
combinatorial reduction that connects our complex symmetric checkerboard ensem-
ble to the asymmetric case, via an interpretation of the Hermitianized moments as
counting walks on certain trees.

We also describe the position of the split-limiting eigenvalue blip, which will be
naturally stated in the context of more general checkerboard ensembles.

Definition 1.8. We define a generalized k-checkerboard ensemble to be an ensemble
of matrices A with entries either real/complex random variables or deterministic
constants, that satisfy aij = amn if i ≡ m (mod k) and j ≡ n (mod k), and such
that for fixed i, j, aij is always “equal” over all matrices in the ensemble (“equal” in
the sense that the entry in that position is always either the same deterministic value
or random variable). The qualifiers symmetric/asymmetric refer to the structure we
place on both the random variables and the deterministic entries, and real/complex
refer to the random variables used.

Note that the complex symmetric k-checkerboard ensemble from Definition 1.1
is an example of a generalized k-checkerboard ensemble, where the deterministic
entries are all 1 and we set aij = 1 when i ≡ j (mod k). Indeed, many of the above
results hold in this more general context as well.

Example 1.9. This depicts a generalized 3-checkerboard asymmetric ensemble,
when the entries ∗ are iidrv complex random variables and the wi are fixed in value
and position over the ensemble:



w1 ∗ w2 w1 ∗ w2

∗ ∗ ∗ ∗ ∗ ∗ · · ·
∗ w3 ∗ ∗ w3 ∗
w1 ∗ w2 w1 ∗ w2

∗ ∗ ∗ ∗ ∗ ∗ · · ·
∗ w3 ∗ ∗ w3 ∗

...
...



.

Definition 1.10. A generalized k-checkerboard ensemble is said to be m-regular
if, for any N ≡ 0 (mod k), there are Nm/k deterministic entries in every row of all
N ×N matrices in the ensemble.

For example, the complex symmetric k-checkerboard ensemble from Defini-
tion 1.1 is 1-regular, while the ensemble described in Example 1.9 is not m-regular
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for any m. In this scenario, we find that the bulk results for singular values and the
eigenvalues will also hold, up to scaling.

Corollary 1.11. Consider an m-regular generalized complex symmetric k-
checkerboard ensemble. In analogy with Theorem 1.3, when N → ∞ the squared
singular values have moments

Mr =
(
R

2

)2r

Cr (1.11)

for Cr = 1
r+1

(
2r
r

)
the rth Catalan number and R = 2

√
1 −m/k, which shows that

the bulk of the singular values converges almost surely to a quarter-circle distribution
of radius R, with the circle’s center at the origin.

Corollary 1.12. In analogy with Theorem 1.7, consider a sequence of N ×N ran-
dom matrices AN from the m-regular complex symmetric k-checkerboard ensemble,
with normalized spectral distribution µ 1√

N
AN

. Assume appropriate control of the
least singular values in appropriate analogy to Assumption 2.7. Then, as N → ∞,

we have almost sure convergence µ 1√
N

AN
→ µcirc

R for µcirc
R the uniform measure on

the disk centered at the origin with radius R :=
√

1 −m/k.

In the absence of Hermitian perturbation results, the characterization of a blip
with different limiting behavior is not so readily obtainable for complex distribu-
tions. The techniques we use to characterize the complex eigenvalue blip will be
markedly more involved than a short perturbation argument.

Fix a generalized k-checkerboard asymmetric ensemble.a Note that any gener-
alized k-checkerboard matrix A can be decomposed as A = M + P where M is a
generalized k-checkerboard matrix with all deterministic entries set to 0, and P is
finite rank (at most k), completely deterministic, and composed of repeating blocks
of some fixed k×k matrix B (determined by the ensemble); we will use this notation
when discussing the blip for generalized checkerboard matrices.

Example 1.13. For example, the 3 × 3 matrix B associated with the ensemble in
Example 1.9 is

B =



w1 0 w2

0 0 0

0 w3 0


.

For AN an N ×N matrix from the ensemble, we expect a vanishing proportion
of the eigenvalues growing of order N (referred to as the blip) and the remain-
ing eigenvalues of size N1/2 (referred to as the bulk) as this would correspond,
heuristically, to the behavior of the singular values as in Proposition 2.1. One also

aWe take the ensemble to be asymmetric instead of symmetric to accommodate general asymmetric
patterns for the deterministic entries, see for example Example 1.9.
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expects, heuristically, that the spectral distribution should follow the distribution
of the matrix P up to an error of size O(N1/2) from the matrix M , as occurs in
the real case. Roughly speaking, we expect a clump of eigenvalues whose size is
around the order of N1/2 at each eigenvalue of P , with the bulk consisting of all the
clumps associated to the zero eigenvalues of P , which has fixed rank at most k as
N → ∞. The blip distribution, then, should reflect the distribution of the non-zero
eigenvalues of B.

This heuristic seems to follow numerical simulation. See Fig. 1(left), which cor-
responds to an ensemble with matrix B having eigenvalues chosen from roots of
unity with appropriate multiplicity.

We give a justification for this heuristic and numerical understanding of the
blip. To extract the blip position, we thus modify the empirical spectral measure
µAN using two types of renormalization — dividing the matrix by N so that the
location of the blip is of constant order as N → ∞, while the bulk is vanishing as
O(N−1/2), and multiplying the total measure by N so that the measure of the blip
remains constant rather than vanishing.

Definition 1.14. Let AN be an N ×N matrix. Define the renormalized measure
µ̃AN := (N/k)µ k

N AN
, where µAN is the empirical spectral measure of AN (on C).

We wish to extract an almost sure limiting measure µ̃AN → µ̃ as N → ∞ over
sequences of matrices {AN} from the ensemble. However, we expect such a measure
µ̃ to have a singularity at 0, since each µ̃AN has total measure N/k, the bulk of
which is of size O(N−1/2), going to 0 as N → ∞.

To avoid this singularity, we will instead restrict our measures by excising small
neighborhoods at the origin.

Notation. For ε > 0, let Bε = {z : |z| ≤ ε} ⊂ C and Ωε = C\Bε.

With some abuse of notation, we use µ̃N to denote both the full measure on
C and the measure restricted to Ωε where appropriate. Instead of convergence of
µ̃AN → µ̃ on C, we restrict to Ωε to avoid the limiting singularity at 0.

Unfortunately, even the existence of a limiting measure associated to appropriate
normalized measures extracting blip behavior is not clear — one might hope to
proceed through the log potential, though certain normalization conditions will
yield singularities that present serious obstacles. We show that, assuming a limiting
measure exists, the limiting measure must indeed be characterized by the spectral
distribution of B.

Theorem 1.15. Assume, restricted to Ωε, that µ̃N → µ̃ almost surely for every
ε > 0. Then for any fixed ε > 0 smaller than all eigenvalues of B, µ̃ must be the
spectral measure of B restricted to Ωε.

For example, with ensemble as in Example 1.9, this theorem states that the blip
is described by the measure µ̃ which will be the restriction to Ωε of the spectral
measure of the 3 × 3 matrix listed in Example 1.13.
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Remark 1.16. In the theorem statement, we have neglected distinguishing µ̃

restricted to Ωε for different ε, since µ̃ on Ωε restricts to µ̃ on Ωε′ when 0 < ε′ < ε.

The basic idea is to show first that the limiting measure must be discrete and
finitely supported on the non-zero eigenvalues of B, and to then show that holomor-
phic moments (calculated from the eigenvalue trace lemma) are enough to character-
ize discrete distributions, while also controlling the error from computing moments
on Ωε instead of all of C.

As a corollary, this gives us better control on the total measure of the bulk, in
analogy with the case of real eigenvalues.

Corollary 1.17. Write k′ for the number of non-zero eigenvalues of B, with mul-
tiplicity. The bulk of the spectral measure µAN consists of N − k′ eigenvalues of
order N1/2+δ for any δ > 0. That is, µ̃AN almost surely has total measure N − k′

on BN−1/2+δ as N → ∞.

Sections 2 and 3 give proofs for these results. In Sec. 2, we prove Theorems 1.3
and 1.6, the bulk and blip results of the singular values for complex symmetric
checkerboard ensembles, as well as Theorem 1.7, our bulk result for the complex
eigenvalue distribution of complex symmetric checkerboard ensembles. In Sec. 3, we
prove singular value and eigenvalue bulk analogs in Corollaries 1.11 and 1.12 for
generalized checkerboard matrices, and prove Theorem 1.15 and Corollary 1.17 to
describe the complex blip behavior. We conclude with some conjectural observations
concerning generalized checkerboard matrices and related ensembles in Sec. 3.3.
Some terminology and auxiliary material can be found in Appendix A.1.

2. Complex Checkerboard Ensembles

We first establish the existence of two squared singular value regimes with a matrix
perturbation result.

Proposition 2.1. As N → ∞, the squared singular values of k-checkerboard
complex symmetric matrices almost surely fall into two regimes: N − k of the
squared singular values are O(N1+ε), and k of the squared singular values are
N2/k2 +O(N3/2+ε), for any ε > 0.

Proof. A k-checkerboard matrix A can be decomposed as M + P , where

mi,j =

{
ai,j if i �≡ j (mod k),

0 otherwise,
pi,j =

{
0 if i �≡ j (mod k),

ai,j otherwise.
(2.1)

A straightforward generalization of [15, Lemma B.3] in the context of our
above argument for the square singular values bulk shows that as N → ∞,
‖A‖op = O(N1/2+ε) almost surely. Since P has k singular values at N/k, and
N − k eigenvalues at 0, Weyl’s inequality for singular values implies that almost

1950005-11
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surely, N − k of the singular values are O(N1/2+ε), and k of the singular values are
N/k +O(N1/2+ε). This implies the proposition for squared singular values.

We modify the combinatorics and weighting function from [15] to extract the
limiting distribution of the blip for the squared singular values of complex symmetric
checkerboard matrices.

2.1. Singular values of complex checkerboard matrices: Bulk

In this subsection, we establish the limiting bulk measure for singular values of
complex symmetric k-checkerboard matrices.

We use the method of moments. We wish to match the moments of our lim-
iting squared singular value distribution with the moments of the quarter-circular
distribution.

Proposition 2.2. Let X be the random variable with probability density function
of a quarter circle supported on [0, 2] of radius 2 with circle-center at the origin
(normalized by π so that it is a probability distribution). Then the random variable
X2 has its rth moment, Mr, equal to the rth Catalan number

Cr :=
1

r + 1

(
2r
r

)
. (2.2)

Proof. The even 2rth moments of both the semicircular distribution and the
quarter-circular distribution of X are known to equal the rth Catalan number,
see for example [3]. The proposition then follows by noting that the rth moment of
the random variable X2 is also the 2rth moment of random variable X .

Proof of Theorem 1.3. Before we can apply the method of moments, we must
first consider the perturbation as in the proof of Proposition 2.1, which exhibits
complex symmetric k-checkerboard matrices as a finite rank (i.e. fixed as N →
∞) perturbation from the corresponding hollow complex symmetric k-checkerboard
matrices. Then, since M + P a finite rank perturbation of M implies that (M +
P )∗(M +P ) is a finite rank perturbation of M∗M , we can apply [15, Theorem 1.3]
to find that the complex symmetric k-checkerboard ensemble and the corresponding
hollow ensemble have the same limiting squared singular value distribution. We thus
apply the method of moments below to the hollow ensemble.

By the eigenvalue trace lemma and linearity of expectation, the rth moment of
the bulk squared singular spectral measure is computed as

E[νs2(r)
A,N ] = E

[∫
νs2

A,N(x)xrdx

]

=
1
N

E


 ∑

σ eigenvalue B

( σ
N

)r




1950005-12
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= N−r−1
E


 ∑

σ eigenvalue B

σr


 = N−r−1

E[Tr(Bk)]

= N−r−1
∑

1≤i1,...,ir≤N

E[bi1,i2 · · · bir,i1 ], (2.3)

where the entries of B = A∗A are given by

bij =
∑

1≤k≤N

akiakj =
∑

1≤k≤N

aikakj (2.4)

by symmetry. Hence

E[νs2(r)
A,N ] = N−r−1

∑
1≤i1≤···≤ir

E[bi1i2 · · · biri1 ]

= N−r−1
∑

1≤i1,...,ir≤N

∑
1≤k1,...,kr≤N

E[ai1k1ak1i2 · · · airkrakri1 ]

= N−r−1
∑

1≤i1,...,i2r≤N

E[ai1i2ai2i3 · · · ai2r−1i2rai2ri1 ]. (2.5)

Each term ζI = ai1i2ai2i3 · · · ai2r−1i2rai2ri1 in the sum corresponds to a cyclic
sequence I = i1, . . . , i2r. Then I may be associated to a closed walk on the complete
graph with vertices labeled by the elements of the set {i1, . . . , i2r} in the order that
the vertices are visited. Define the weight of I to be the number of distinct entries
of I. If the weight of I is at least r + 2, then there is a factor a in ζI independent
from all the rest, and thus the expectation E[ζI ] = 0 (recall we have zeroed out
all deterministic entries because we are considering the hollow ensemble, and the
random variables are all mean 0).

The sequences of weight at most r contribute negligibly, o(N r+1). This is because
the sequences may be partitioned into a finite number of equivalence classes by the
isomorphism class of the corresponding walk. An isomorphism class of weight t ≤ r

then gives rise to O(N t) walks of weight t by choosing labels for the distinct nodes
in any such walk.

Closer analysis is required for a sequence I of weight r + 1. First, the walk
corresponding to I visits r + 1 distinct nodes and traverses r distinct edges. Hence
the walk consists of 2r steps on a tree with r + 1 nodes.

Note that E[ζI ] contributes to the sum precisely when all the factors, aij , are
matched with their conjugates, aij , in which case E[ζI ] = 1. Indeed, if aij is an
entry of a complex symmetric k-checkerboard matrix A with i �≡ j (mod k), note
that E[aijaij ] = E[aijaij ] = 0 while E[aijaij ] = 1. This is because if aij ∼ X + iY

for X,Y iidrv mean 0 variance 1/2 random variables, then

E[aijaij ] = E[X2] + 2iE[X ]E[Y ] − E[Y 2] = 0, (2.6)

E[aijaij ] = E[X2] + E[Y 2] = 1. (2.7)
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Thus it suffices to count the number of sequences I satisfying the above condition.
In the graph correspondence, the condition on I is equivalent to the walk traversing
each tree edge exactly twice, where, for an edge corresponding to {i, j} in I, one
traversal corresponds to ai,j and the other traversal to aij in ζI . For a given edge e
and the corresponding subwalk w between the first and second traversals of e, each
edge in w must be traversed and later retraced in the reverse direction, since trees
are acyclic. Thus w has an even number of steps, so the two traversals of e occur
on steps of opposite parity.

Remark 2.3. This implies that the same result holds for the corresponding asym-
metric ensemble, since this parity requirement ensures that the combinatorics must
be the same in both cases.

This corresponds in ζI to matching aij with aij ; if the steps occurred with the
same parity, then aij would be matched with aij (or aij with aij), resulting in zero
expectation. In summary, it suffices to count the number of non-isomorphic trees on
r+ 1 nodes with a given starting node, and a given absolute order on the leaves —
there is a bijection between such walks and such ordered trees given by the order
in which the leaves are visited in the walk.

As is well known, there are Cr ordered trees on r+1 nodes, where Cr is the rth
Catalan number [45]. There is a further restriction: since aij = 0 if i ≡ j (mod k), an
appearance of any such term in the cyclic product will contribute zero expectation.
We may then label the nodes in the tree in such a way that no two adjacent nodes
have the same congruence in N r+1(k−1

k )r + o(N r+1) ways. Thus we have

E[νs2(r)
A,N ] = N−r−1


 ∑

weight I<r+1

+
∑

weight I=r+1

+
∑

weight I>r+1


E[ζI ]

= N−r−1

(
o(N r+1) + Cr

(
N r+1

(
k − 1
k

)r

+ o(N r+1)
)

+ 0
)

= Cr

(
k − 1
k

)r

+ o(1). (2.8)

Hence we have proved

lim
N→∞

E[νs2(r)
A,N ] = Cr

(
k − 1
k

)r

= Cr

(
R

2

)2r

, (2.9)

which are the moments of the (square of the) quarter circle distribution of radius
R = 2

√
1 − 1/k as in Proposition 2.2, which suffices.

2.2. Singular values of complex checkerboard matrices: Blip

Throughout this entire subsection, we follow the notation and terminology in
[15]. For convenience, the relevant terminology from that paper is collected in
Appendix A.1. We analyze the blip using the method of moments.
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Lemma 2.4. The expected rth moment of the EBSSSM is given by

E[M s2(r)
A,N ] =

1
kr+1

2n∑
j=0

(
2n
j

) r+j∑
i=0

(
r + j

i

)
(−1)r−i

(
k

N

)4n+2i+r

E[Tr(A∗A)2n+i].

(2.10)

Proof. By definition

E[M s2(r)
A,N ] =

1
k

E

[∑
σ

fn

(
k2σ

N2

)(
1
N

(
σ − N2

k2

))r
]

=
1
k
N−r

E

[∑
σ

fn

(
k2σ

N2

)(
σ − N2

k2

)r
]

=
1
k
N−r

E

[∑
σ

(
k2σ

N2

)2n(
k2σ

N2
− 1 − 1

)2n(
σ − N2

k2

)r
]

=
1
k
N−r

(
k2

N2

)2n

×E


∑

σ

σ2n
2n∑

j=0

(
2n

2n− j

)
(−1)2n−j

(
k2σ

N2
− 1
)j (

σ − N2

k2

)r



=
1
k
N−r

(
k2

N2

)2n 2n∑
j=0

(
2n
j

) r+j∑
i=0

(
r + j

i

)(
−N

2

k2

)r−i

E

[∑
σ

σ2n+i

]

=
1

kr+1

2n∑
j=0

(
2n
j

) r+j∑
i=0

(
r + j

i

)
(−1)r−i

(
k

N

)4n+2i−r

E[Tr(A∗A)2n+i],

(2.11)

where the last equality follows by the eigenvalue trace lemma.

Observe that the (i, j)th entry of A∗A is given by
∑N

m=1 amiamj =∑N
m=1 aimamj (using the symmetry condition of A). By definition of the trace

E[Tr(A∗A)η] =
∑

1≤i1,...,iη≤N
1≤m1,...,mη≤N

E[ai1k1am1i2ai2m2ak2i3 · · · aiηmηamηi1 ]. (2.12)

Terms of the form

E[Tr(A∗A)η] =
∑

1≤i1,...,iη≤N
1≤m1,...,mη≤N

E[ai1m1am1i2ai2m2am2i3 · · · aiηmηamηi1 ]

will be our cyclic products. Degrees of freedom arguments allow us to restrict our
attention to “configurations” of “1-blocks” and “2-blocks.” See Appendix A.1 for
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terminology taken from [15] and [15, Lemma 3.13] for proof of the claim. We com-
pute the contribution to the expectation E[Tr(A∗A)η].

Lemma 2.5. The total contribution to E[Tr(A∗A)η] of an S-class C with r1 1-
blocks and (|S| − r1) 2-blocks is

p(η)
(|S|
r1

)
(k − 1)|S|−r1

(
1
2

)r1/2

EkTrBr1

((
N

k

)2η−|S|
+O

((
N

k

2η−|S|−1
)))

,

(2.13)

where

p(η) =
(2η)|S|

|S|! +O(η|S|−1) (2.14)

and the expectation E[TrBm1
k ] is taken over the k × k hollow GOE as defined in

Definition 1.5.

Proof. The quantity p(η) expresses the number of ways to set the position of
|S| blocks (which we have established must be 1-blocks or 2-blocks) among a cyclic
product of length 2η which arises from E[Tr(A∗A)η]. We can estimate p(η) =

(
2η
|S|
)
+

O(η|S|−1). The term
(

2η
|S|
)

counts the number of ways to choose positions of the
blocks (ignoring overlap). The error term O(η|S|−1) counts the number of ways in
which some two blocks will be less than one term apart, which will occur non-
generically as η → ∞.

Next, the term
(|S|

r1

)
counts the number of ways to choose which of the |S| blocks

are 1-blocks (equivalently, the number of ways to choose which of the |S| blocks are
2-blocks). As in [15, Proposition 3.14], the congruence classes modulo k of all the
indices are completely determined by the choices of congruence class for the indices
of the r1 1-blocks, and the following (k − 1)|S|−r1 choices of congruence class for
the shared index of each 2-block. The r1 1-blocks form a cyclic product of length
r1, and the number of ways of choosing the congruence classes modulo k of their
indices is equivalent to an expectation of the form∑

1≤i1,...,ir1≤k

E[bi1i2bi2i3 · · · bir1 i1 ] = E[TrBr1
k ] (2.15)

for Bk as defined prior to Theorem 1.6. This is because the number of valid choices
of index congruence classes corresponds precisely to the number of ways to match
terms in a length r1 cyclic product, with the restriction that consecutive indices
cannot be equal (which would correspond to a deterministic entry in the original
checkerboard matrix, and not a 1-block type entry). Further details in the argument
for this reduction are similar to those in the proof of [15, Proposition 3.14].

However, our extension to singular values requires a modification to the combi-
natorics. As in (2.6) and (2.7), we see that the paired entries in our cyclic product
must be matched in conjugate pairs if they are to contribute to the expectation.
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This is automatically the case for every 2-block, since the two terms side by side
are already conjugate pairs. However, as η → ∞ and |S| remains fixed, this will be
true with probability 1/2 for each pair of 1-blocks, and since there are r1/2 pairs of
1-blocks, we see that the number of valid configurations should be scaled by (1

2 )r1/2.
The last piece of the expression in Lemma 2.5 is the term ((N

k )2η−|S| +

O((N
k

2η−|S|−1
))), which arises from the degree of freedom count 2η−|S|−1 for the

indices once we have fixed their congruence classes, and the big O error term arises
from the lower degree of freedom terms we are ignoring, when only considering
configurations of 1-blocks and 2-blocks.

Proof of Theorem 1.6. We can now compute the rth moment E[M s2(r)
A,N ] of the

EBSSSM. By a combinatorial lemma [15, Lemma 3.16] copied as Lemma A.10, we
see that only S-classes of size r contribute: if |S| > r, then the contribution vanishes
in the limit of N → ∞ by a degree of freedom count, and if |S| < r, the contribution
cancels via the combinatorial lemma. Then the outer sum in Lemma 2.4 collapses
to only the j = 0 term. We can substitute Lemma 2.5 into Lemma 2.4 (after adding
a sum over the parameter r1 which counts the number of 1-blocks in our S-class):

lim
N→∞

E[M s2(r)
A,N ] =

1
kr+1

r∑
i=0

(
r

i

)
(−1)r−i

r∑
r1=0

(4n+ 2i)r

r!

(
r

r1

)
(k − 1)r−r1

×Ek

[
Tr
(

1√
2
B

)r1]

=
1

kr+1
2r

r∑
r1=0

(
r

r1

)
(k − 1)r−r1Ek

[
Tr
(

1√
2
B

)r1]
. (2.16)

To compute the rth centered moments, we need the first moment:

lim
N→∞

E[M s2(1)
A,N ] =

1
k2

1∑
i=0

(−1)1−i

(
1
i

)
(4n+ 2i)k(k − 1) =

2(k − 1)
k

. (2.17)

Thus the rth centered moments are given by

M s2(r)
c = lim

N→∞
E

[∫
(x− µ

s2(1)
A,N )rdµs2

A,N

]

=
r∑

r1=0

(
r

r1

)(−2(k − 1)
k

)r−r1

lim
N→∞

E[µs2(r1)
A,N ]. (2.18)

Substituting the expression from Eq. (2.16) gives

M s2(r)
c =

r∑
r1=0

(
r

r1

)
(−1)r−r1

(
2
k

)r 1
k

r1∑
i=0

(
r1
i

)
(k − 1)r−i

Ek

[
Tr
(

1√
2
B

)i
]
.
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Next, using the identity
(

r
r1

)(
r1
i

)
=
(
r
i

)(
r−i
r1−i

)
, we obtain

M s2(r)
c =

r∑
i=0

(
r

i

)
(k − 1)r−i

(
2
k

)r 1
k

Ek

[
Tr
(

1√
2
B

)i
]

r∑
r1=i

(
r − i

r1 − i

)
(−1)r−r1

=
r∑

i=0

(
r

i

)
(k − 1)r−i

(
2
k

)r 1
k

Ek

[
Tr
(

1√
2
B

)i
]

(−1)rδmi

=

(√
2
k

)r
1
k

Ek[Tr(B)r] (2.19)

which proves Theorem 1.6 via the moment method.

2.3. Eigenvalues of complex checkerboard matrices: Bulk

The standard Hermitization process via the log potential is done as follows (see for
example [47]). Given a sequence of N × N random matrices AN with normalized
spectral distribution µ 1√

N
AN

on C, we have the logarithmic potential

fN (z) :=
∫

C

log|w − z|dµ 1√
N

AN
(z). (2.20)

The key tool is the logarithmic potential continuity theorem.

Proposition 2.6 (Log Potential Continuity Theorem, see [47]). If for almost
every z ∈ C, fN (z) converges almost surely to

f(z) :=
∫

C

log|w − z|dµ(w) (2.21)

for some probability measure µ, then µ 1√
N

AN
converges almost surely to µ [47].

Thus to show that µ 1√
N

AN
converges almost surely to the uniform measure µcirc

on the unit disk, it suffices to show that the log potential fN (z) converges to the
corresponding log potential of µcirc. For the checkerboard ensembles, we instead
show that the re-scaled measure µ 1

R
√

N
AN

converges to µcirc, where R =
√

1 − 1/k.
We can reduce the study of fN (z) to the spectra of Hermitian matrices by

rewriting

fN (z) =
1
N

N∑
j=1

log
∣∣∣∣λj(AN )√

N
− z

∣∣∣∣
=

1
N

log
∣∣∣∣det

(
1√
N
AN − zI

)∣∣∣∣
=

1
2

∫ ∞

0

log xdνN,z(x), (2.22)
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where dνN,z(x) is the spectral measure of the Hermitian matrix(
1√
N
AN − zI

)∗( 1√
N
AN − zI

)
(2.23)

for I the N ×N identity matrix. This uses the fact that

|detA| =
N∏

j=1

|λj(A)| =
N∏

j=1

λj(A∗A)1/2. (2.24)

We will analyze the spectral measure of the Hermitian matrices(
1√
N
AN − zI

)∗( 1√
N
AN − zI

)
(2.25)

with the method of moments.
We first have to control some convergence issues for our checkerboard ensem-

bles, which arise from singularities of the logarithm at 0 and ∞. The singularity
at ∞ is considerably easier to control than the one at 0, as we will see below.
Our result is conditional on the following assumption on the least singular values
being sufficiently far from 0, whose role will be made explicit in the lemma that
follows.

Assumption 2.7. We say that a measure νN,z satisfies this assumption if

lim
T→∞

sup
N≥1

∫
|log x|≥T
0<x≤1

log xdνN,z = 0. (2.26)

Remark. In the complex asymmetric case, Tao and Vu showed in 2010 that this
assumption is satisfied via a polynomial bound on the least singular value, and a
count of the other small singular values via the Talgrand concentration inequal-
ity, see [9]. This difficulty of controlling the singularity at 0 has traditionally been
the case with the complex asymmetric ensemble: Girko formulated the logarithmic
potential approach in 1984 [27], but the circular law for the asymmetric ensemble
remained unsolved until the behavior of the least singular values was sufficiently con-
trolled by Tao and Vu in 2010 [49]. Our complex symmetric checkerboard ensemble
presents difficulties for the control of the small singular values — the symmetric con-
dition (as opposed to entries being iidrv) causes the determinant to be a quadratic
function of the rows (as opposed to linear in the iidrv case), and the checkerboard
structure adds further complications. See for example [20] for a discussion of the
complications introduced by imposing a symmetric structure on the matrices. Some
recent work has been done on extending the polynomial bound on the least singu-
lar value to complex symmetric matrices [43] and asymmetric structured ensembles
[19], but we are not aware of any adequate generalization’s of Tao’s and Vu’s small
singular value count to non-iidrv matrices. We can, however, control the singular
values at ∞ for our checkerboard ensemble.
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Lemma 2.8. Fix z. For matrices AN from either the complex asymmetric ensemble
or the complex symmetric k-checkerboard ensemble, the convergence νN,z → νz

implies the convergence of the corresponding log potentials∫ ∞

0

log xdνN,z(x) →
∫ ∞

0

log xdνz(x) (2.27)

assuming Assumption 2.7.

Proof. The condition we need is uniform integrability. For a Borel function f :
E → R and a sequence {ηN (x)}N≥1 of probability measures on R+, we say that f
is uniformly integrable with respect to that sequence of measures if

lim
T→∞

sup
N≥1

∫
|f |≥T

|f |dηN = 0. (2.28)

If f satisfies this condition with respect to the sequence {ηN (x)}N≥1 and is contin-
uous, and the sequence of measures converges weakly ηN → η for some probability
measure η, then

lim
N→∞

∫
E

fdηN =
∫

E

fdη. (2.29)

For further detail see [9].
In our case, we will have (for fixed z) E = R+, ηN = νN,z, η = νz, and

f(x) = log x. Since log x has singularities at 0 and ∞, in order to satisfy uni-
form integrability we need to control the behavior of the measures νN,z at 0 and
∞. To emphasize this we split the integral:∫

R+
log xdνN,z =

∫ 1

0

log xdνN,z +
∫ ∞

1

log xdνN,z. (2.30)

At infinity, we must treat the asymmetric and complex symmetric checker-
board ensembles differently. For the complex asymmetric ensemble, we note that
the squared singular values of 1√

N
AN − zI are O(1) with probability 1, which

trivially suffices for uniform integrability (for sufficiently large T , νN,z has 0 mass
wherever x ≥ 1 and log x ≥ T ). To control the checkerboard ensemble at infin-
ity, we use Weyl’s inequalities for singular values to see that the squared singular
values of 1

R
√

N
AN − zI have (N − k)/N mass that is O(1), and k/N mass that is

N/(R2k2) +O(N1/2). This also gives uniform integrability:

lim
T→∞

sup
N≥1

∫
|log x|≥T

x≥1

|log x|dνcheck
N,z ≤ lim

T→∞
C
k

T
logT = 0. (2.31)

The behavior at the origin (the least singular values) is more difficult to con-
trol. However, using Assumption 2.7, which is known to be satisfied for the complex
asymmetric ensemble [49], we have uniform integrability for both the complex asym-
metric ensemble and our complex symmetric k-checkerboard ensemble.
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Girko showed that, for the complex asymmetric ensemble, the corresponding
νasym

N,z converges almost surely to an explicit measure νz that satisfies

1
2

∫ ∞

0

log xdνz(x) =
∫

C

log|w − z|dµcirc(w), (2.32)

which shows the circular law, i.e. µ 1√
N

AN
→ µcirc almost surely, via log potential

continuity and Lemma 2.8.
Thus, to show that the checkerboard ensembles have an eigenvalue bulk that

converges to µcirc, it suffices to show that our measures converge νcheck
N,z → νz as

well. This is accomplished as follows.

Theorem 2.9. Let νasym
N,z and νcheck

N,z be probability measures with

1
2

∫ ∞

0

log x dνasym
N,z (x) =

∫
C

log|w − z| dµasym
1√
N

AN
(w) and

1
2

∫ ∞

0

log x dνcheck
N,z (x) =

∫
C

log|w − z| dµcheck
1

R
√

N
An

(w)

(2.33)

obtained as above, where µasym
1√
N

AN
and µcheck

1
R

√
N

An
are the spectral measures of matrices

normalized as labeled for R =
√

k−1
k , and where the AN are drawn from complex

asymmetric ensemble and the complex symmetric k-checkerboard ensemble, respec-
tively. Then as N → ∞, νasym

N,z and νcheck
N,z both converge to a distribution with the

same rth moments M (r)
z given by

M (r)
z =

r∑
j=0

c
(r)
j |z|2j (2.34)

for some coefficients c(r)
j , where 0 ≤ c

(r)
j ≤ 4rCr with Cr the rth Catalan number.

Since for almost all z, νasym
N,z is known to converge as N → ∞ to a measure νz

independent of N, this allows us to conclude that νcheck
N,z → νz as well.

Proof. For any matrix AN (here AN can denote either a complex asymmetric
matrix, or a hollow complex checkerboard matrix) write

BN,z :=
(

1√
N
AN − zI

)∗( 1√
N
AN − zI

)
.

When studying the measures νcheck
N,z , it suffices to consider instead “hollow” checker-

board matrices AN where for i ≡ j (mod k) we set ai,j = 0 instead of 1. This is
because the original checkerboard ensemble is a rank k perturbance of this mod-
ified ensemble, i.e. we can write AN = Ahollow

N + P for a finite rank matrix P ,
which will also amount to a finite rank perturbance of the matrix BN,z to the anal-
ogous Bhollow

N,z . Then by [15, Theorem 1.3] the two measures converge to the same
distribution almost surely.
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Returning to the general setting, note that BN,z has entries

bij =

(
N∑

m=1

1√
N
aim − δimz

)∗(
1√
N
amj − δmjz

)

=
1
N

N∑
m=1

amiamj − 1√
N
aijz − 1√

N
ajiz + δij |z|2 (2.35)

for δij the Kronecker delta (δij = 1 if i = j and is 0 otherwise).
By the eigenvalue trace lemma, the rth moment M (r)

N,z of νN,z is given by the
following cyclic product :

M
(r)
N,z =

1
N

∑
1≤i1,...,ir≤N

E[bi1i2bi2i3 · · · biri1 ]. (2.36)

By linearity of expectation we can expand the above expectation in terms of
aij using (2.35) and re-indexing. This is done via the following notation. Take
Ψ : {1, 2, . . . , r} → {α, β, γ, δ} to represent an arbitrary map of sets, and write
A = |Ψ−1(α)|, B = |Ψ−1(β)|, C = |Ψ−1(γ)|, and D = |Ψ−1(δ)|. Then M

asym (r)
N,z

and M check (r)
N,z can be expressed by

M
asym (r)
N,z

=
∑
Ψ


 (−1)B+CzBzC |z|2D

NA+B/2+1

∑
1≤i1,...,ir≤N

1≤mj≤N for j∈Ψ−1(α)

E[ξ(Ψ(1))
1 ξ

(Ψ(2))
2 · · · ξ(Ψ(r))

r ]


,

M
check (r)
N,z

=
∑
Ψ


 (−1)B+CzBzC |z|2D

R2A+BNA+B/2+1

∑
1≤i1,...,ir≤N

1≤mj≤N for j∈Ψ−1(α)

E[ξ(Ψ(1))
1 ξ

(Ψ(2))
2 · · · ξ(Ψ(r))

r ]


,

(2.37)

where

ξ
(Ψ(j))
j =




amjijamjij+1 Ψ(j) = α,

aijij+1 Ψ(j) = β,

aij+1ij Ψ(j) = γ,

δijij+1 Ψ(j) = δ.

(2.38)

We also define notation to write down the conjugacy structure of the above
expectation. That is, for fixed Ψ, after we factor out the Kronecker deltas δij ij+1 by
collapsing the indices ij and ij+1 together, the cyclic product above will become a
product of 2A+B terms of the form aij (entries of AN ) or aij (conjugates of entries
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of AN .) Each aij or aij will be referred to as a term. Then, for 1 ≤ j′ ≤ 2A+B (j′

indices meant to enumerate mj indices as well), let ψ+ denote those indices j′ such
that the j′th term in the product is an entry from AN , and let ψ− denote those
indices j′ such that the j′th term in the product is an entry from AN .

Example 2.10. The function {1, 2, 3, 4, 5, 6, 7} Ψ−→ {β, β, α, δ, γ, γ, α} corresponds
to the cyclic product E[(ai1i2)(ai2i3)(am3i3am3i4)(δi4i5)(ai6i5)(ai7i6)(am7i7am7i1)].

We can now give a different characterization of the above expectations. Below,
we use the phrase step to refer to each traversal of an edge in a walk on a graph.
First we specialize to the complex asymmetric case.

Lemma 2.11. For AN from the complex asymmetric ensemble and for fixed Ψ, as
N → ∞ the expectation

1
NA+B/2+1

∑
1≤i1,...,ir≤N

1≤mj≤N for j∈Ψ−1(α)

E[ξ(Ψ(1))
1 ξ

(Ψ(2))
2 · · · ξ(Ψ(r))

r ]. (2.39)

counts the number of non-isomorphic closed walks on trees with A+B/2 + 1 nodes
such that

• if B/2 is not an integer then this quantity is understood to be zero,
• each edge is traversed exactly twice (once in each direction),
• each step is given a sign ±, and
• if some edge is traversed first on the j′1th step and then later on the j′2th step,

then either j′1 has positive sign and j′2 has negative sign, or vice versa.

We refer to such walks as signed closed walks on trees.

Proof. First, note that in such a cyclic product there will be 2A + B terms and
2A+B indices, once we have collapsed the indices corresponding to Kronecker delta
terms δij . Suppose we set some of the indices to be equal, so that there are � free
indices for 1 ≤ � ≤ 2A+B. If � < A+B/2+1, then the contribution vanishes in the
limit N → ∞. Else, define a graph on � vertices by drawing an edge between vertices
i and j if there exists a term with indices i and j (respecting the given identification
of vertices/indices). There must be at least � − 1 edges, and if � > A + B/2 + 1,
then there are more than A + B/2 distinct edges. By construction, two distinct
edges are given by two independent terms. Thus, there are more than A + B/2
terms in our cyclic product, so that there exists one term independent from the
rest. Note that all terms are drawn from mean 0 distributions, so that if any one
term is independent from the rest, then the entire expectation is immediately zero.
So we conclude that, for a non-zero expectation, our graph will contain A+B/2+1
vertices and A+B/2 edges, and thus is a tree on A+B/2 + 1 nodes. We show first
that every cyclic product of non-zero expectation corresponds to a walk satisfying
the above conditions.
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i1=i7

m7

i2=m3=i6

i3 i4=i5

1

2
3 4

5

67

8

Fig. 3. The graph associated to the cyclic product from Example 2.10 if we consider the matching
i1 = i7, i2 = m3 = i6, and i4 = i5 (which is valid, i.e. gives non-zero expectation). The arrows
represent steps of the walk, numbered in order, with dotted arrows representing steps of negative
sign and solid arrows representing steps of positive sign.

Define a walk on this tree as follows (see Fig. 3 for a useful example). Start at
the index corresponding to i := i1. If the first term is aij , walk from vertex i to
vertex j, and assign this step a + sign. If instead the first term is aji, also walk from
vertex i to vertex j, but assign this step a − sign. These are the only possibilities.
By construction, the cyclic product above will yield a walk on the constructed tree
with A + B/2 edges. Since we started with 2A + B edges, each edge is traversed
exactly twice. For the third condition, note by the computations in (2.6) and (2.7)
that two dependent terms (i.e. the two times we traverse the same edge) with a non-
zero expected product must be of different conjugacy classes (i.e. one is an entry
from AN , and another is an entry from AN ). This translates to the third condition
above: since the sign of each step keeps track of the conjugacy class that gave that
step, this means that the two steps for every edge must have opposite sign.

Now we claim that every walk on a tree with A+B/2 nodes satisfying the above
conditions corresponds to a cyclic product with non-zero expectation. Given such
a walk, with first step from i to j, set the first term in the cyclic product to be
aij if the step has sign +, and aji if the step has sign −. Doing this for all steps
will generate a cyclic product where every term is paired with exactly one other
term, in a conjugate pair. To ensure we count only terms of non-zero expectation,
we need to check that all conjugate pairs are of the form E[aijaij ] = 1 and not
E[aijaji] = 0, since we are working with a complex asymmetric ensemble, and aij is
independent from aji. However, the second situation cannot happen, since our walk
occurs on a tree, i.e. if each edge is traversed exactly twice, the two steps must occur
in opposite directions, so one step goes from i to j, while the other goes from j to i.
Then, forcing the steps to have opposite signs implies our paired expectations are
of the form E[aijaij ] = 1. This shows the bijection between our cyclic expectations
and walks satisfying the above conditions.
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Then, once we have fixed a valid identification of the starting 2A + B indices
to A + B/2 + 1 free indices, each free index has N choices (unidentified indices
being assigned the same index will happen non-generically as N → ∞ for r fixed,
and will vanish in the limit as lower order terms by degree of freedom counts as
above), so each non-zero expectation will contribute NA+B/2+1 which equals 1 after
dividing out by the normalizing factors of N present above, which suffices for the
lemma.

Corollary 2.12. For AN from the complex symmetric k-checkerboard ensemble
and for fixed Ψ, Lemma 2.11 holds for the analogous expectation:

1
R2A+BNA+B/2+1

∑
1≤i1,...,ir≤N

1≤mj≤N for j∈Ψ−1(α)

E[ξ(Ψ(1))
1 ξ

(Ψ(2))
2 · · · ξ(Ψ(r))

r ]. (2.40)

Proof. The interpretation of cyclic products as walks as above for aij entries of
checkerboard matrices is similarly valid up to the last two paragraphs of the proof
of Lemma 2.11.

It is clear that every identification of indices that gives a non-zero expectation
for the asymmetric ensemble also gives a non-zero expectation for the symmetric
ensemble. We should check that we can find no additional matchings from the
symmetric condition. This is something we have already seen: above, we argued
given a walk satisfying the above conditions and the associated cyclic product it
generates, none of the pairings in the cyclic product are of the form E[aijaji],
because of the restriction that steps on the same edge are of opposite sign.

However, we have an additional restriction that when choosing our indices, if
there exists an edge between i and j, then i �≡ j (mod k). This is because if i ≡
j (mod k) then aij = 0, and the expectation is zero. The modification is clear from
the interpretation of walks on a tree: since trees are acyclic, once we have fixed the
congruence class of one vertex, (recalling � = A+B/2+1 there will be (k−1)�−1 ways
to choose congruence classes of the other vertices such that adjacent vertices on the
tree do not share the same congruence class, so there are k(k−1)�−1 ways to choose
the congruence classes. After fixing the congruence classes there are (N/k)� ways to
choose indices for each vertex, so we see there are N �(k−1

k )�−1 = NA+B/2+1R2A+B

ways to choose the vertices that will give a non-zero expectation. Dividing by the
normalizing factors of N and R in front then give the result.

This shows that for all z ∈ C, limN→∞M
asym (r)
N,z = limN→∞M

check (r)
N,z . A few

observations reduce the moments to the form claimed in Theorem 2.9. Since above
we saw that every term must be paired with exactly one other conjugate term to
produce a non-zero expectation, we conclude B = C, so our moments must take
the form claimed in Theorem 2.9.

Remark 2.13. Note that the proof of Corollary 2.12 also goes through for the com-
plex asymmetric k-checkerboard ensemble. Because of the restriction of matching
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terms in conjugate pairs, the symmetry condition is immaterial for this specific bulk
calculation as is discussed above.

Corollary 2.14. We have 0 ≤ c
(r)
j ≤ 4rCr with Cr the rth Catalan number.

Proof. Note that there are 4r choices of Ψ. Then, since A+ B/2 + 1 ≤ r + 1 and
the number of non-isomorphic closed walks on trees with r+1 nodes such that each
edge is traversed exactly twice is given by Cr (equivalently the number of ordered
trees on r + 1 nodes), we obtain the claimed upper bound via Lemma 2.11 and
Eq. (2.37). Note that this upper bound is far from tight, as we have not removed
any walks corresponding to zero expectation, from the assignment of signs to steps.

Example 2.15. The coefficients c(r)
j can be computed by hand. For example, there

is one choice of Ψ such that B + C + 2D = 0 (i.e. A = r), which corresponds to
signed closed walks on trees with r nodes. Then, as in the proof of Theorem 1.3,
every closed walk on a tree where every even step has sign + and every odd step
has sign — always satisfies the condition that the two steps on the same edge are of
opposite sign, i.e. the number of valid walks is counted by the Catalan number Cr, so
we conclude c(r)

0 = Cr. There is also only one choice of Ψ such that B+C+2D = 2r
(i.e. D = r), which corresponds to signed closed walks on trees with one node, of
which there is one, so c(r)

r = 1.

Example 2.16. The first few moments are

M (1)
z = 1 + |z|2,

M (2)
z = 2 + 3|z|2 + |z|4,

M (3)
z = 5 + 15|z|2 + 6|z|4 + |z|6.

(2.41)

In particular, Corollary 2.14 implies that Carleman’s condition is satisfied for
our moments at each fixed z, since for fixed z the moments are bounded by some
scaling of the Catalan numbers (which satisfy Carleman’s condition as in Wigner’s
semicircle law). Thus the moments uniquely characterize the distribution for every
fixed z, i.e. νcheck

N,z → νz and we have proved Theorem 2.9.

Proof of Theorem 1.7. Applying Proposition 2.6 and Lemma 2.8 to Theorem 2.9
suffices for the proof of Theorem 1.7.

3. Generalized Checkerboard Ensembles

3.1. Analogs of bulk and blip results for generalized

checkerboard ensembles

The ensembles that follow in this subsection will have random variables iidrv (up
to a symmetry restriction). Many of the main results above hold for generalized
checkerboard ensembles as well.
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Proof of Corollary 1.11. As in the proof of Theorem 1.3 we can reduce to the
case where the deterministic entries are all zero by a perturbation argument, apply
the eigenvalue trace lemma up to Eq. (2.5), and also interpret the cyclic products
as closed walks on trees with r + 1 nodes. The number of closed walks traversing
each edge twice on trees with r + 1 nodes is again given by the number of ordered
trees on r + 1 nodes, which is Cr. As before, it is not true that all N r+1 + O(N r)
choices of indices will yield a non-zero expectation in the cyclic product, since if
i and j are adjacent indices then we cannot have aij = 0. Before, this reduced to
the condition i �≡ j (mod k). In the m-regular k-checkerboard case, however, the
correct condition is that, having fixed any congruence class modulo k of some index
i, there are k − m congruence classes for the index j such that aij �= 0. This is
because m is a constant dependent only on the entire ensemble. Thus we see that
(R/2)2rN r+1 + O(N r) choices of indices will yield a non-zero expectation in the
cyclic product. Indeed, there are N choices for the root of the tree, N(1 − m/k)
choices for each of their children, N(1−m/k) choices for each of the children in the
next level down, etc., which shows that all moments of the squared singular value
bulk are Mr = (R

2 )2rCr as claimed.

Example 3.1. In general, a non-regular generalized k-checkerboard ensemble need
not have singular values following a quarter-circular bulk. Consider the generalized
2-checkerboard ensemble tiled with 2 × 2 matrices of the form(

1 ∗
∗ ∗

)
, (3.1)

where, as before, each ∗ represents an iidrv complex random variable with mean 0
variance 1/2 that respects the symmetric structure. As in the proof of Theorem 1.3
the bulk of this ensemble will converge to the bulk of the ensemble with the entries
1 replaced with 0. Brute force computing the small moments (counting by hand the
appropriate walks on trees as is done to compute the quarter-circular bulk above)
gives M1 = 3/4, M2 = 10/8, M3 = 42/16, and M4 = 198/32. In particular, the
bulk cannot be quarter-circular of radius R, which would correspond to moments
Mr = (R/2)2rCr, e.g. M1 = (1/2)(R2/2), M2 = (2/4)(R4/4), M3 = 5/8(R6/8),
and M4 = (14/16)(R8/16).b

Proof of Corollary 1.12. The discussion of the log potential in the proof of The-
orem 1.7 is done in the same way for our generalized checkerboard ensemble up to
Lemma 2.8. The proof of that lemma goes through as well, assuming the appropri-
ate analogy to Assumption 2.7 (replace instances of the checkerboard ensemble with
the generalized checkerboard ensemble), when we note that Weyl’s inequality for
singular values of 1√

N
AN −zI for fixed z gives at least N−k squared singular values

bWe note that the numerators (starting with the 0th moment) 2, 3, 10, 42, 198 are the first five
terms of the OEIS sequence A007226, which relates to counting certain ternary trees.
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of size O(1), and at most k squared singular values of size O(N), in which case the
argument in Lemma 2.8 for the behavior at ∞ can be applied as well. The qualifiers
“at least” and “at most” come from the fact that the perturbation from the hollow
ensemble (deterministic 1’s replaced with 0’s) for a generalized k-checkerboard is
rank at most k, possibly less.

Then, the expansions of Theorem 2.9 in the checkerboard context can also be
done for the generalized checkerboard ensembles, with the necessary modifications
arising in an analogous proof of Corollary 2.12. As discussed in that proof, the
restriction of symmetry on the ensemble does not affect the combinatorics that arise
when counting signed closed walks on trees. Again, the modification comes when
counting how many ways there are to choose indices, given a walk, since adjacent
indices i, j must have aij �= 0 for the expectation to be non-zero as discussed in the
proof of Corollary 2.12. Here, there areN ways to choose the index of the root, R2N

ways to choose the indices of the root’s children, RN ways to choose the indices
of those children’s children, etc. which shows as in Corollary 2.12 that the bulk
converges to a uniform disk centered at the origin scaled by R.

3.2. Eigenvalues of complex checkerboard matrices: Blip

The main steps in the proof of Theorem 1.15 are to first restrict our attention
to regions Ωε to avoid the singularity at 0, show that the distribution must be
discrete and finitely supported, show that discrete distributions are characterized
by (holomorphic) moments, compute moments via the eigenvalue trace lemma, and
to control the error arising from restricting to Ωε.

Lemma 3.2. For all ε > 0, assume almost sure convergence to some measure
µ̃N → µ̃ as measures on Ωε. With any fixed ε > 0, the measure µ̃ on Ωε must be a
discrete measure with finite support.

Proof. Consider 0 < ε′ < ε and write µ̃N and µ̃′
N for the restrictions to Ωε and

Ωε′ respectively. Write also µ̃N → µ̃ and µ̃′
N → µ̃′ via our convergence assumption.

Note µ̃′ restricts to µ̃ on Ωε.
Write p(x) for the (degree k) characteristic polynomial of B, and define f(z) :=

zp(z), viewed as a function f : C → C. Note f has fixed degree as N → ∞.
Consider the pushforward measures f∗µ̃′

N → f∗µ̃′ on f(Ωε′). Note that f∗µ̃N is
also the spectral distribution of f( k

NAN ) restricted to f(Ωε′) with total (restricted)
measure scaled by N/k, and in particular has the same support. We can control the
support of the spectral distribution of f( k

NAN ) via its largest singular value, which
majorizes all its eigenvalues. If c is the constant term of p(z), the Cayley–Hamilton
theorem shows that p( k

NP ) − c is a block matrix consisting of repeating k × k

identity blocks scaled by −kc/N . This then shows f( k
N P ) = 0. Note f( k

NAN ) =
f( k

NP ) + O( k
NM) = O( k

NM), where the big O term is a sum of mixed products
of k

NM and k
N P at least linear in k

NM . The number of terms in this sum is fixed
as N → ∞ because f has fixed degree. The largest singular value of k

NP is O(1)
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and the largest singular value of k
NM is almost surely O(N−1/2+ε) for all ε > 0

via a standard method of moments argument, see the proof of Proposition 2.1 and
[15, Lemma B.3] (recall that M has all deterministic entries set to zero).c

Thus the largest singular value of f( k
NAN ) is almost surely O(N−1/2+ε) for

all ε > 0. In particular, as N → ∞ the spectral measure of f( k
NAN ) and thus

f∗µ̃′
N almost surely has support contained in any fixed radius ball at the origin.

Considering the neighborhood f(Bε′) of the origin, we find that f∗µ̃′
N is almost

surely supported on f(Bε′) as N → ∞. Fixing any δ > 0, we can then select ε′ > 0
small such that f∗µ̃′

N vanishing outside f(Bε′) implies that, on Ωε′ , µ̃′
N vanishes

outside balls of radius δ centered at the zeroes of f .d

Since µ̃′
N restricts to µ̃N on Ωε as long as ε′ < ε, sending δ → 0 and then N → ∞

shows that µ̃ restricted to Ωε is finitely supported at the (non-zero) zeroes of f .

We would like to analyze the moments of µ̃N → µ̃. However, the formula from the
eigenvalue trace lemma applies to moments of µ̃N on all of C rather than restricted
Ωε. We first control this error.

Lemma 3.3. As N → ∞, the measure µ̃N restricted to Bε contributes at most
(1/k)(2k + 2)ε to the rth moments, for r ≥ 6.

Proof. Applying Weyl’s inequalities as in Proposition 2.1 shows that, almost surely,
the k largest singular values of AN are O(N) and the remaining N − k singular
values are O(N1/2+ε). Recall that the product of the m largest singular values
majorizes the product of m largest eigenvalues. The m product of the m largest
eigenvalues of AN thus have growth o(Nk+(m−k)3/5) as N → ∞. Thus the total
measure of µ̃N outside of BN−1/5 is bounded above by (1/k)(2k + 1) as N → ∞
since m(4/5) > k + (m − k)(3/5) when m ≥ 2k + 1. The measure µ̃N restricted
to the region outside of BN−1/5 but within Bε thus contributes at most (2k + 1)ε
to any positive moments, while the measure µ̃N restricted to BN−1/5 contributes at
most N ·N−6/5 = O(N−1/5) to rth moments for r ≥ 6 as N → ∞, which we bound
by (1/k)ε. Adding these two contribution gives the claimed bound.

Remark 3.4. The part of the proof of Lemma 3.3 bounding the total measure
outside BN−1/5 also shows that µ̃ viewed as a measure on Ωε has finite total measure,
for all ε > 0.

We next show how the (holomorphic) moments characterize discrete distribu-
tions.

cThis bound alternately follows from the Gershgorin Circle Theorem applied to M — central limit
theorem on the at most N random variables in each row gives Gershgorin disks of radii O(N1/2)
with centers at distance O(1) from the origin.
dNote C\f(Ωε′ ) ⊂ f(Bε′ ) by surjectivity of f .
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Lemma 3.5. Any finite discrete measure µ on C with finite support in C\{0} is
uniquely determined by its rth integer moments for r ≥ α, for any fixed integer
α > 0.

Proof. Given distinct non-zero complex numbers {zj}n
j=1 with non-zero coefficients

{λj}n
j=1, and distinct non-zero complex numbers and {z′k}m

k=1 with non-zero coeffi-
cients {λ′k}m

k=1 such that
n∑

j=1

λjz
r
j =

m∑
k=1

λ′kz
′r
k (3.2)

for all r ≥ N , we wish to show that n = m and, for some appropriate permutation
of the indices, λj = λ′k for j = k, and zj = z′k for j = k.

We can associate to any complex number z the sequence z̃ =
(zα, zα+1, zα+2, . . .) ∈ CN. Then Eq. (3.2) becomes

n∑
j=1

λjzj =
m∑

k=1

λ′kz
′
k. (3.3)

Under the left-shift linear operator in the sequence space CN, note that z̃ is a non-
zero eigenvector with eigenvalue z. In particular, sequences associated with dis-
tinct complex numbers have distinct eigenvalues and are thus linearly independent.
Applying this to Eq. (3.3) gives the claim.

Lemma 3.6. The expected rth moments E[M̃ (r)
N ] converge to the rth moment of

the spectral measure of the deterministic k × k matrix B as N → ∞.

Proof. Write M̃ (r)
N for the rth moment of µ̃N . By the eigenvalue trace lemma, the

expected rth moment is given by

E[M̃ (r)
N ] =

N

k

1
N

kr

N r

∑
1≤i1,...,ir≤N

E[ai1i2 · · · airi1 ]. (3.4)

We analyze this with a standard degree of freedom count. Fix a cyclic product
E[ai1i2 · · · airi1 ]. Consider some aij appearing in this cyclic product that corre-
sponds to a random variable, i.e. not a deterministic entry of the matrix. If aij

is independent from the other entries, the contributed expectation is zero since the
random variables in the matrix ensemble have mean 0. Else, aij matches another
term in the cyclic product, which loses at least one degree of freedom for the indices.
In particular, such a contribution to E[M̃ (r)

N ] must be O(1/N) which vanishes as
N → ∞.

Thus, as N → ∞, the quantity E[M̃ (r)
N ] can be computed only considering cyclic

products with all entries deterministic. Reducing modulo k (and recalling that the
deterministic entries of k-checkerboard matrices repeat modulo k)

E[M̃ (r)
N ] =

1
k

∑
1≤i1,...,ir≤k

E[ai1i2 · · · airi1 ], (3.5)
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where the expectations E[ai1i2 · · ·airi1 ] are understood to be taken over determin-
istic entries only. This is precisely the rth moment of the spectral measure of the
matrix B as claimed.

Proof of Theorem 1.15. Fix ε > 0 and consider 0 < ε′ < ε. By Lemma 3.3 the
rth moments of µ̃ on Ωε′ differ from the rth moments of the spectral measure of B
by at most (1/k)(2k + 2)ε′, when r ≥ 6. Since µ̃ on Ωε restricts to µ̃ on Ωε′ when
ε′ < ε, and µ̃ is supported on the zeroes of f , the rth moments of µ̃ on Ωε are equal
to the rth moments of µ̃ on Ωε′ whenever ε is smaller than the smallest non-zero
eigenvalue of B (i.e. smallest non-zero zero of f). Sending ε′ → 0 shows that the
rth moments of µ̃ on Ωε must be equal to the rth moments of the spectral measure
of B restricted to Ωε when r ≥ 6. By Lemma 3.2, µ̃ on Ωε is a discrete measure
with finite support at the non-zero zeroes of f . By Remark 3.4 the total measure is
finite. Lemma 3.5 shows that these two measures must be equal as claimed.

Proof of Corollary 1.17. By Theorem 1.15, the k′ largest eigenvalues of AN are
all of size O(N). Applying Weyl’s inequalities as in Proposition 2.1 shows that,
almost surely, the k′ largest singular values of AN are O(N) and the remaining
N − k′ singular values are O(N1/2+δ). The product of the m largest singular values
majorize the product of the m largest eigenvalues, which suffices for the claim with
a similar argument as in the proof of Lemma 3.3.

3.3. Conjectures

Although in Sec. 3 we only analyzed ensembles resulting in “discrete-type” blip dis-
tributions, it is natural to ask whether we can naturally construct other ensembles
where the resulting blip distribution will not be discrete. For example, if we modify
the complex k-checkerboard ensemble and replace the deterministic 1’s with com-
plex numbers on the unit circle, drawn with uniform probability, our result trivially
implies that the blip will consist of a ring of eigenvalues on the unit circle, in the
same sense of Theorem 1.15; see Fig. 1(right).

One can attempt to construct non-discrete blip distributions in other ways, for
example with an analogy of a generalized complex k-checkerboard ensemble with B
matrix having eigenvalues at the kth roots of unity, except where k =

√
N is growing

as N → ∞ over the squares. Heuristically, one expects the blip distribution to be a
ring of vanishing thickness, in some sense, but one would need different techniques
than those used to describe the discrete-type blip distributions characterized by
Theorem 1.15.

As a final note, the bulk also seems to deviate from standard circular law behav-
ior in more general ensembles when, for example, the entries are no longer iidrv,
and different entries are assigned different means or variances. Instead we observe
some sharpened bulk distributions, that are distinctly non-uniform.
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Appendix A

A.1. Notation and terminology for cyclic products

Throughout we have used some convenient terminology borrowed from [15] to ana-
lyze the cyclic products. The definitions are copied and adapted below.

Recall that

E[TrMn] =
∑

1≤i1,...,in≤N

E[mi1i2mi2i3 · · ·mini1 ]. (A.1)

We refer to terms E[mi1i2mi2i3 · · ·mini1 ] as cyclic products and m’s as entries of
cyclic products. Occasionally, some of our cyclic products appear in altered form,
with certain terms mijij+1 replaced instead with mij+1ij or perhaps with complex
conjugates mij ij+1 or mij+1ij , but we extend this terminology to those scenarios
as well. In many of our moment arguments, we are interested in computing these
cyclic products, which reduces to a combinatorics problem of understanding the
contributions of different cyclic products. We develop the following vocabulary to
classify types of cyclic products according to the aspects of their structure that
determine overall contributions.

Definition A.1. A term refers to a single component mij ij+1 of the cyclic product.

Definition A.2. A block is a set of adjacent a’s surrounded by w’s in a cyclic
product, where the last entry of a cyclic product is considered to be adjacent to the
first. We refer to a block of length � as an �-block or sometimes a block of size �.

Fig. A.1. Sharp bulk distribution, two different variance values for the random entries.
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Fig. A.2. Three different variance values for the random entries. There appear to be three bulks
“stacked” on top of each other.

Definition A.3. A configuration is the set of all cyclic products for which it is
specified (a) how many blocks there are, and of what lengths, and (b) in what order
these blocks appear. However, it is not specified how many w’s there are between
each block.

Example A.4. The set of all cyclic products of the form w · · ·waw · · ·waaw · · ·
waw · · ·w, where each · · · represents a string of w’s and the indices are not yet
specified, is a configuration.

Definition A.5. Let S be a multiset of natural numbers. An S-class, or class when
S is clear from context, is the set of all configurations for which there exists a unique
s-block for every s ∈ S counting multiplicity. In other words, two configurations in
the same class must have the same blocks but they may be ordered differently and
have different numbers of w’s between them.

Definition A.6. Given a configuration, a matching is an equivalence relation ∼
on the a’s in the cyclic product which constrains the ways of indexing (see Def-
inition A.9) the a’s as follows: an indexing of a’s conforms to a matching ∼ if,
for any two a’s ai�,i�+1 and ait,it+1 , we have {i�, i�+1} = {it, it+1} if and only if
ai�i�+1 ∼ ait,it+1 . We further constrain that each a is matched with at least one
other by any matching ∼.

Remark A.7. Noting that the aij are drawn from a mean-0 distribution, any
matching with an unmatched a would not contribute in expectation, hence it suffices
to only consider those with the a’s matched at least in pairs.
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Example A.8. Given a configuration ai1i2wi2i3ai3i4wi4i5ai5i6wi6i7ai7i8wi8i1 (the
indices are not yet specified because this is a configuration), if ai1i2 ∼ ai5i6 we must
have either i1 = i5 and i2 = i6 or i1 = i6 and i2 = i5.

Definition A.9. Given a configuration, matching, and length of the cyclic product,
then an indexing is a choice of

(1) the (positive) number of w’s between each pair of adjacent blocks (in the cyclic
sense), and

(2) the integer indices of each a and w in the cyclic product.

Lemma A.10 ([15, Lemma 3.16]). For any 0 ≤ p < m

m∑
j=0

(−1)j

(
m

j

)
jp = 0. (A.2)

Furthermore
m∑

j=0

(−1)m−j

(
m

j

)
jm = m!. (A.3)

A.2. Joint density for singular values of complex

symmetric Gaussian ensemble

We give a proof of the joint density of singular values for complex symmetric matri-
ces found in [1, 25].

Theorem A.11 (Joint Density of Singular Values for Complex Symmetric
Matrices). Suppose M is a random complex symmetric N ×N matrix (not nec-
essarily Hermitian), with entries in the upper triangle half and the diagonal iidrv
mean 0 variance 1 complex Gaussian random variables. The joint density of the
singular values of M is given by

ρN (x1, . . . , xN ) = cN |∆(x2
1, . . . , x

2
N )|

N∏
j=1

|xj |
N∏

j=1

e−|xj|2/2. (A.4)

We adapt a proof of Ginibre’s formula for the eigenvalue joint density of complex
asymmetric matrices as presented by Ge [26], who cites Mehta [22, 39].

Proof of Theorem A.11. Let |M |2 = Tr(M∗M) denote the Frobenius (Hilbert–
Schmidt) norm. Then

dP := CNe
−|M|2/2dM = CN

∏
i,j

e−|xij|2/2dM (A.5)

gives M ’s density on the space of all n×n complex symmetric matrices, where dM
is Lebesgue measure on that space and Cn is some constant.
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We derive the desired formula by computing P(|M − D′| ≤ ε) in two ways,
for ε > 0 arbitrarily small and D′ a fixed diagonal matrix with non-negative real
entries. The above density gives

P(|M −D′| ≤ ε) =
∫
|M−D′|≤ε

dP. (A.6)

We can treat this integral as the volume of a thin rectangle centered at D′, since ε
is very small. Since we take M from a distribution of complex symmetric matrices,
and such matrices have N2 +N degrees of freedom, this volume is bounded above
by Cne

−|D′|2/2εN
2+N . Thus we have

P(|M −D′| ≤ ε) = (C + o(1))e−|D′|2/2εN
2+N . (A.7)

We now compute this probability a second way by using the Takagi factorization
of a complex symmetric matrix M :

M = UDU ᵀ, (A.8)

where U is unitary and D is a diagonal matrix with non-negative real entries. Since
unitary matrices U can be written as U = exp(S) for some S skew Hermitian, U
has N2 degrees of freedom, while D has N . Thus, the left- and the right-hand sides
of (A.8) have the same number of degrees of freedom.

Define a density ψ(D)dD on the space of diagonal matrices with non-negative
real entries, so that when U is taken from the unitary group uniformly and D with
density ψ(D), M = UDUᵀ is a Gaussian random matrix. We eventually use both
probability expressions to compute ψ(D), which will in turn allow us to determine
the joint density formula.

Now, let M be such that |M − D′| ≤ ε. Then, following the lead of Tao [46],
we write U = I +O(ε) and D = D′ + εE, where E is real diagonal. After counting
degrees of freedom, S has density C′(1 + o(1))εN

2
dS, where dS is the Lebesgue

measure on the space of skew-Hermitian matrices. Similarly, E has density C′′(1 +
o(1))εnψ(D′)dE. We have

M = UDUᵀ

= exp(εS)(D′ + εE)exp(εS)ᵀ

= exp(εS)(D′ + εE)exp(εSᵀ)

= exp(εS)(D′ + εE)exp(−εS). (A.9)

Thus we can write

P(|M −D′| ≤ ε)

= C′′′
∫∫

|exp(εS)(D′+εE)exp(−εS)−D′|≤ε

(1 + o(1))εN
2
dSεNψ(D′)dE

= C′′′εN
2+N(1 + o(1))ψ(D′)

∫∫
|exp(εS)(D′+εE)exp(−εS)−D′|≤ε

dSdE. (A.10)
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Taylor expanding the exponential to first-order gives

|exp(εS)(D′ + εE)exp(−εS) −D′|
= |(D′ + εSD′ + εE − εD′S +O(ε2)) −D′|
= |ε(E + SD′ −D′S +O(ε))|, (A.11)

which from above we want to be at most ε. As |B|2 = Tr(B∗B), this implies that

|E + SD′ −D′S| ≤ 1 +O(ε). (A.12)

Consider the change of variables

A = E + SD′ −D′S. (A.13)

Entry-by-entry, we have

Ajk = Ejk + (D′
kkSjk −D′

jjSjk). (A.14)

Here we have used the fact that D′ is diagonal. Also, the skew-symmetry of S and
the diagonality of E and D′ imply Ajk is symmetric.

Next, we write the real and imaginary parts of this change of coordinates sepa-
rately. Let σAjk

denote the real part of Ajk, and τAjk
denote the imaginary part of

Ajk. Recalling that D is real diagonal, we have

σAjk
= σEjk

+ σSjk
(σD′

kk
− σD′

jj
), τAjk

= τSjk
(σD′

kk
+ σD′

jj
). (A.15)

We can interpret this matrix change of variables A→ (S,E) as a transformation
from Rn2+n to Rn2+n, i.e. from (for j ≤ k) the σAjk

and τAjk
to (n2 + n)-tuples

with entries σSjk
(for j < k), τSjk

(for j ≤ k), and σEjj . This transformation is a
direct sum of three diagonal transformations:

σAjk
= σSjk

(σD′
kk

− σD′
jj

) for j �= k,

σAjj = σEjj ,

τAjk
= τSjk

(σD′
kk

+ σ′
D′

jj
).

(A.16)

This is a diagonal transformation, i.e. its Jacobian is the product of each of the
above scaling factors. The Jacobian for the change of coordinates (S,E) → A is

∏
1≤j<k≤n

|D′2
kk −D′2

jj |
n∏

j=1

|2D′
jj | = |∆(D′2

11, . . . , D
′2
nn)|−1

n∏
j=1

|2D′
jj |−1. (A.17)

Returning to (A.10), we have

P(|M −D′| ≤ ε)

= C′′′εN
2+N (1 + o(1))ψ(D′)

∫∫
|exp(εS)(D′+εE)exp(−εS)−D′|≤ε

dSdE

= C′′′εN
2+N (1 + o(1))ψ(D′)

∫
|A|≤1+O(ε)

dA. (A.18)
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Note that as ε → 0, the integral in A goes to a constant. Absorbing this into
the constant C′′′ and comparing the above expression for P(|M −D′| ≤ ε) with
(A.7) gives

ψ(D′) = C′′′′|∆(D2
11, . . . , D

2
nn)|


 N∏

j=1

|2D′
jj |

 e−|D′|2/2

= C′′′′|∆(D2
11, . . . , D

2
nn)|

N∏
j=1

|2D′
jj |

N∏
j=1

e−D′2
jj/2. (A.19)

As the diagonal entries Djj are precisely the singular values of M , we find

ρn(x1, . . . , xN ) = C′′′′|∆(x2
1, . . . , x

2
N )|

N∏
j=1

|2xj |
N∏

j=1

e−|xj|2/2, (A.20)

which proves the theorem after absorbing 2N into the constant.

Theorem A.11 allows us to compute the distribution of the least singular value
for the Gaussian complex symmetric ensemble. As before, we list the available dis-
tribution for the least singular values of the complex asymmetric Gaussian ensemble
as computed by Edelman [23]:

Complex asymmetric Gaussian:

p(σN ) = NσNe
−Nσ2

N /2. (A.21)

Corollary A.12. The probability density function of the least singular value σN

follows the Rayleigh distribution

p(σN ) = NσNe
−Nσ2

N /2. (A.22)

Note that, while the joint densities are distinct, the least singular value of the
complex asymmetric and complex symmetric Gaussian matrices share the same
distribution.

Proof of Corollary A.12. Order the singular values 0 ≤ σN ≤ · · · ≤ σ1. Using
Theorem A.11, we can integrate out the other parameters σ1, . . . , σN−1 from the
joint density to obtain the density function of the least singular value:

p(σN ) =
∫

σN≤σN−1≤···≤σ1

ρN (σ1, σ2, . . . , σN )dσ1 · · · dσN−1

= CN

∫
σN≤σN−1≤···≤σ1

∏
1≤k<j≤N

(σ2
k − σ2

j )
N∏

j=1

σj

N∏
j=1

e−σ2
j /2dσ1 · · · dσN−1
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= CNσNe
−Nσ2

N /2

∫
σN≤σN−1≤···≤σ1

∏
1≤k<j≤N−1

(σ2
k − σ2

j )
∏

1≤k≤N−1

(σ2
k − σ2

N )

·
n∏

j=2

σj

n∏
j=2

e−(σ2
j−σ2

N )/2dσ1 · · ·dσN−1. (A.23)

As is done in [23], make the change of variables xj = σ2
j − σ2

N . Thus, with
dxj = 2dσj , we find

p(σN ) = 21−NCNσNe
−Nσ2

N /2

∫
0≤xN−1≤···≤x1

∏
1≤k<j≤N−1

(xk − xj)

×
N−1∏
j=1

xj

N−1∏
j=1

e−xj/2dx1 · · · dxN−1. (A.24)

Since the integral is independent of σN , it is constant, which we denote by C′
N :

p(σN ) = C′
NσNe

−Nσ2
N /2. (A.25)

As p is a probability distribution,
∫

R≥0
p(σN ) dσN = 1 and thus C′

N = N , complet-
ing the proof.
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