The shape of the front of multidimensional branching Brownian motion

Yujin H Kim (Courant Institute, NYU) Stanford Probability Seminar, Sep. 2024

Based on joint works with Julien Berestycki, Bastien Mallein, Eyal Lubetzky, and Ofer Zeitouni.

Fix the dimension $d \geq 1$.

 Start: a single particle v at 0 performs Brownian motion in R^d (iid 1d BM's in each coordinate)

$$B_s(v) = (B_s^1(v), \ldots, B_s^d(v)) \in \mathbb{R}^d$$

- After $\exp(1)$ distributed time, the particle splits into two particles, which evolve independently from that time onward.
- Repeat.

Fix the dimension $d \geq 1$.

 Start: a single particle v at 0 performs Brownian motion in R^d (iid 1d BM's in each coordinate)

$$B_s(v) = (B_s^1(v), \ldots, B_s^d(v)) \in \mathbb{R}^d$$

• After $\exp(1)$ distributed time, the particle splits into two particles, which evolve independently from that time onward.

• Let $N_t :=$ set of particles at time t.

- Let $N_t :=$ set of particles at time t.
- $B_{\cdot}(v) := (Brownian)$ path of the particle v.

- Let $N_t :=$ set of particles at time t.
- $B_{\cdot}(v) := (Brownian)$ path of the particle v.
- $\mathbb{E}|N_t| = e^t$

- Let $N_t :=$ set of particles at time t.
- $B_{\cdot}(v) := (Brownian)$ path of the particle v.
- $\mathbb{E}|N_t| = e^t$
- For each coordinate index i, Cov(Bⁱ_t(v), Bⁱ_t(w)) = branching time of v and w

Covariance computation

Consider particles $v, w \in N_t$, where v and w split at time s.

Covariance computation

Consider particles $v, w \in N_t$, where v and w split at time s. $\mathbb{E}[B_t(v)B_t(w) \mid \text{splitting times}]$

$$= \mathbb{E}\Big[\Big(B_t(v) - B_s(v) + B_s(v)\Big)\Big(B_t(w) - B_s(w) + B_s(v)\Big) \mid \text{spl. times}\Big]$$

 $= \mathbb{E}[B_s(v)^2 \mid \text{spl. times}]$

- Consider some time $t \geq 0$, and consider some particle $v \in N_t$.
- Consider $\mathcal{B}(v, k) := \{w \in N_t : \operatorname{Cov}(B_t(v), B_t(w)) \ge k\}.$

- Consider some time $t \ge 0$, and consider some particle $v \in N_t$.
- Consider $\mathcal{B}(v,k) := \{w \in N_t : \operatorname{Cov}(B_t(v), B_t(w)) \ge k\}.$
- Last slide: the particles that branched from v after time k:

- Consider some time $t \ge 0$, and consider some particle $v \in N_t$.
- Consider $\mathcal{B}(v,k) := \{w \in N_t : Cov(B_t(v), B_t(w)) \ge k\}.$
- Last slide: the particles that branched from v after time k:

• Embed the tree into [0,1].

- Consider some time $t \ge 0$, and consider some particle $v \in N_t$.
- Consider $\mathcal{B}(v,k) := \{w \in N_t : \operatorname{Cov}(B_t(v), B_t(w)) \ge k\}.$
- Last slide: the particles that branched from v after time k:

- Embed the tree into [0,1].
- Then $\mathcal{B}(v,k) \approx \{w \in N_t : |v-w| \le 2^{-k}\}.$

- Consider some time $t \ge 0$, and consider some particle $v \in N_t$.
- Consider $\mathcal{B}(v,k) := \{w \in N_t : \operatorname{Cov}(B_t(v), B_t(w)) \ge k\}.$
- Last slide: the particles that branched from v after time k:

- Embed the tree into [0, 1].
- Then $\mathcal{B}(v,k) \approx \{w \in N_t : |v-w| \le 2^{-k}\}.$ $\Rightarrow Cov(B_t(v), B_t(w)) \approx \log_2\left(\frac{1}{d(v,w)}\right).$

Let $V_N := [1, N]^2 \cap \mathbb{Z}^2$. The discrete Gaussian free field on V_N (w/ 0 boundary conditions) is the field $\{h_v^{V_N} : v \in \mathbb{Z}^2\}$ with joint law

$$dh^{V_N} := \frac{1}{Z} e^{-\frac{1}{8} \sum_{v \sim w} (h_v^{V_N} - h_w^{V_N})^2} \prod_{v \in V_N} dh_v^{V_N} \prod_{v \notin V_N} \delta_0(dh_v^{V_N}).$$

Let $V_N := [1, N]^2 \cap \mathbb{Z}^2$. The discrete Gaussian free field on V_N (w/ 0 boundary conditions) is the field $\{h_v^{V_N} : v \in \mathbb{Z}^2\}$ with joint law

$$dh^{V_{N}} := \frac{1}{Z} e^{-\frac{1}{8} \sum_{v \sim w} (h_{v}^{V_{N}} - h_{w}^{V_{N}})^{2}} \prod_{v \in V_{N}} dh_{v}^{V_{N}} \prod_{v \notin V_{N}} \delta_{0}(dh_{v}^{V_{N}}).$$

Properties:

- $\{h_v^{V_N}\}_{v\in\mathbb{Z}^2}$ is a Gaussian vector.
- $\operatorname{Cov}(h_v^{V_N}, h_w^{V_N}) = \frac{2}{\pi} \log \frac{N}{\max(\|v w\|, 1)} + O(\|v w\|^{-2}).$

Another source of log-correlated fields comes from the log-characteristic polynomials of various random matrix ensembles.

Another source of log-correlated fields comes from the log-characteristic polynomials of various random matrix ensembles.

Eg. (CUE) Sample $U_N \sim$ Haar measure on $N \times N$ unitary matrices.

Another source of log-correlated fields comes from the log-characteristic polynomials of various random matrix ensembles.

Eg. (CUE) Sample $U_N \sim$ Haar measure on $N \times N$ unitary matrices. Write its log-characteristic polynomial:

$$\begin{split} X_N(\theta) &:= \sum_{j=1}^N \log \left| 1 - e^{i(\lambda_j - \theta)} \right| \\ &= \operatorname{Re} \sum_{j=1}^N \sum_{k \ge 1} - \frac{e^{ik(\lambda_j - \theta)}}{k} = \operatorname{Re} \sum_{k \ge 1} - \frac{\operatorname{Tr} U_N^k}{k} e^{-ik\theta} \end{split}$$

Another source of log-correlated fields comes from the log-characteristic polynomials of various random matrix ensembles.

Eg. (CUE) Sample $U_N \sim$ Haar measure on $N \times N$ unitary matrices. Write its log-characteristic polynomial:

$$X_{N}(\theta) := \sum_{j=1}^{N} \log \left| 1 - e^{i(\lambda_{j} - \theta)} \right|$$
$$= \operatorname{Re} \sum_{j=1}^{N} \sum_{k \ge 1} -\frac{e^{ik(\lambda_{j} - \theta)}}{k} = \operatorname{Re} \sum_{k \ge 1} -\frac{\operatorname{Tr} U_{N}^{k}}{k} e^{-ik\theta}$$

Then, using the result of Diaconis-Shahshahani:

$$\mathsf{Cov}(X_N(heta), X_N(heta')) \asymp \mathbb{E} \sum_{k \ge 1} rac{e^{-ik(heta - heta')}}{k^2} \mathsf{Re} ig[|\mathsf{Tr} U_N^k|^2 ig] \ \asymp \mathsf{Re} \sum_{k \ge 1} rac{e^{-ik(heta - heta')}}{k} = -\mathsf{Re} \log(1 - e^{i(heta - heta')}) \asymp \log | heta - heta'| \,.$$

Examples come from...

- Random matrices (log-characteristic polynomials of beta-ensembles, Wigner, Ginibre,...)
- Interface models ($\nabla \phi/\text{Ginzburg-Landau models}$)
- Stochastic processes (local time of 2D Brownian motion, cover times of graphs)
- Even number theory (Riemann zeta function on the critical line, restricted to intervals of length 1)

• ...

The *extreme values* of log-correlated fields are expected to exhibit universal behavior.

1. Maximum

 $Max \sim Leading \ order - C \log(Leading \ order) + Gumbel + random shift$

The *extreme values* of log-correlated fields are expected to exhibit universal behavior.

1. Maximum

 $Max \sim Leading \ order-C \log(Leading \ order)+Gumbel+random \ shift$ Remarks:

- The C is *larger* than that of the iid case
- Random-shift is often called *derivative martingale*, related to the total mass of a critical Gaussian multiplicative chaos measure.

The *extreme values* of log-correlated fields are expected to exhibit universal behavior.

1. Maximum

 $Max \sim Leading \ order - C \log(Leading \ order) + Gumbel + random shift Remarks:$

- The C is larger than that of the iid case
- Random-shift is often called *derivative martingale*, related to the total mass of a critical Gaussian multiplicative chaos measure.
- 2. (Extremal point process) Let m_t be the expected value of the maximum of the log-correlated field $\{X_t(v)\}_{v \in N_t}$.

 $\sum_{v \in N_t} \delta_{X_v(v) - m_t} \rightarrow \text{decorated Poisson point process} + \text{random shift}$

The *extreme values* of log-correlated fields are expected to exhibit universal behavior.

1. Maximum

 $Max \sim Leading \ order - C \log(Leading \ order) + Gumbel + random shift Remarks:$

- The C is larger than that of the iid case
- Random-shift is often called *derivative martingale*, related to the total mass of a critical Gaussian multiplicative chaos measure.
- 2. (Extremal point process) Let m_t be the expected value of the maximum of the log-correlated field $\{X_t(v)\}_{v \in N_t}$.

 $\sum_{v \in N_t} \delta_{X_v(v) - m_t} \rightarrow \text{decorated Poisson point process} + \text{random shift}$

Finding a connection with BBM/BRW is crucial.

The Question of the Day

The Question of the Day

Question of the day: Simulate a BBM, run until time t. "Trace out" the outer edge of the picture formed by the BBM particles in N_t (the "front" of the BBM process). What is its shape?

For all large times t, the particles in d ≥ 2 will "percolate" a ball of some radius f(t) (Biggins '78, Gärtner '82)

- For all large times t, the particles in d ≥ 2 will "percolate" a ball of some radius f(t) (Biggins '78, Gärtner '82)
- OTOH, exceptional particles will travel very far from the origin, creating spikes away from this ball.

- For all large times t, the particles in d ≥ 2 will "percolate" a ball of some radius f(t) (Biggins '78, Gärtner '82)
- OTOH, exceptional particles will travel very far from the origin, creating spikes away from this ball.
- Question OTD: What is the shape of the outer envelope of the BBM around its furthermost particles (the "front")?

- For all large times t, the particles in d ≥ 2 will "percolate" a ball of some radius f(t) (Biggins '78, Gärtner '82)
- OTOH, exceptional particles will travel very far from the origin, creating spikes away from this ball.
- Question OTD: What is the shape of the outer envelope of the BBM around its furthermost particles (the "front")?

Some definitions.

- For a particle $v \in N_t$, write $R_t(v) := \|B_t(v)\|$.
- Let $R_t^* := \max_{v \in N_t} R_t(v)$ (the max norm at time t).
- "Furthermost particles" = the particles whose norms are within O(1) of R^{*}_t.

Some definitions.

- For a particle $v \in N_t$, write $R_t(v) := \|B_t(v)\|$.
- Let $R_t^* := \max_{v \in N_t} R_t(v)$ (the max norm at time t).
- "Furthermost particles" = the particles whose norms are within O(1) of R^{*}_t.

Stepping stones:

1. At what distance (from the origin) is the front located?

Some definitions.

- For a particle $v \in N_t$, write $R_t(v) := \|B_t(v)\|$.
- Let $R_t^* := \max_{v \in N_t} R_t(v)$ (the max norm at time t).
- "Furthermost particles" = the particles whose norms are within O(1) of R^{*}_t.

Stepping stones:

- 1. At what distance (from the origin) is the front located?
 - = Understand the maximum R_t^*
- For a particle $v \in N_t$, write $R_t(v) := \|B_t(v)\|$.
- Let $R_t^* := \max_{v \in N_t} R_t(v)$ (the max norm at time t).
- "Furthermost particles" = the particles whose norms are within O(1) of R^{*}_t.

- 1. At what distance (from the origin) is the front located?
 - = Understand the maximum R_t^* ('21)

- For a particle $v \in N_t$, write $R_t(v) := \|B_t(v)\|$.
- Let $R_t^* := \max_{v \in N_t} R_t(v)$ (the max norm at time t).
- "Furthermost particles" = the particles whose norms are within O(1) of R^{*}_t.

- 1. At what distance (from the origin) is the front located? = Understand the maximum R_r^* ('21)
- 2. How are the "furthermost particles" distributed?

- For a particle $v \in N_t$, write $R_t(v) := \|B_t(v)\|$.
- Let $R_t^* := \max_{v \in N_t} R_t(v)$ (the max norm at time t).
- "Furthermost particles" = the particles whose norms are within O(1) of R^{*}_t.

- 1. At what distance (from the origin) is the front located? = Understand the maximum R_t^* ('21)
- 2. How are the "furthermost particles" distributed? = Understand the extremal point process

- For a particle $v \in N_t$, write $R_t(v) := \|B_t(v)\|$.
- Let $R_t^* := \max_{v \in N_t} R_t(v)$ (the max norm at time t).
- "Furthermost particles" = the particles whose norms are within O(1) of R^{*}_t.

- 1. At what distance (from the origin) is the front located? = Understand the maximum R_t^* ('21)
- How are the "furthermost particles" distributed? = Understand the extremal point process ('21, '24)

- For a particle $v \in N_t$, write $R_t(v) := \|B_t(v)\|$.
- Let $R_t^* := \max_{v \in N_t} R_t(v)$ (the max norm at time t).
- "Furthermost particles" = the particles whose norms are within O(1) of R^{*}_t.

- 1. At what distance (from the origin) is the front located? = Understand the maximum R_t^* ('21)
- How are the "furthermost particles" distributed? = Understand the extremal point process ('21, '24)
- 3. How does the front grow? Scaling limit? ('24)

- For a particle $v \in N_t$, write $R_t(v) := \|B_t(v)\|$.
- Let $R_t^* := \max_{v \in N_t} R_t(v)$ (the max norm at time t).
- "Furthermost particles" = the particles whose norms are within O(1) of R^{*}_t.

Stepping stones:

- 1. At what distance (from the origin) is the front located? = Understand the maximum R_t^* ('21)
- 2. How are the "furthermost particles" distributed? = Understand the extremal point process ('21, '24)
- 3. How does the front grow? Scaling limit? ('24)

So, the study of the front is tied to the "extremal landscape" of BBM.

Extremal landscape, dimension 1: Maximum

Fix
$$d = 1$$
. Define $m_t(1) := \sqrt{2}t - \frac{3}{2\sqrt{2}}\log t$. Then

 $R_t^* - m_t(1) \rightarrow \text{Gumbel} + \text{random shift in distribution}.$

Fix
$$d = 1$$
. Define $m_t(1) := \sqrt{2}t - \frac{3}{2\sqrt{2}}\log t$. Then

 $R_t^* - m_t(1) \rightarrow \text{Gumbel} + \text{random shift in distribution}.$

• Convergence in distribution was proved by Bramson '83 via connection with F-KPP equation, a reaction-diffusion equation

Fix
$$d = 1$$
. Define $m_t(1) := \sqrt{2}t - \frac{3}{2\sqrt{2}}\log t$. Then

 $R_t^* - m_t(1) \rightarrow \text{Gumbel} + \text{random shift in distribution}.$

- Convergence in distribution was proved by Bramson '83 via connection with F-KPP equation, a reaction-diffusion equation
- identification of the limiting law as a Gumbel + random shift was proved by Lalley-Sellke '87

Why Gumbel + random shift?

The random shift

Figure 1: Left: initial particles veer to the left. Right: initial particles veer far to the right.

In both pictures, we see how the initial behavior permanently shifts the maximum. (Image by É. Brunet, taken from notes of J. Berestycki).

The random shift

Theorem (Lalley-Sellke, '87)

$$\lim_{L\to\infty}\lim_{t\to\infty}\mathbb{P}\big(R^*_t-m_t(1)\leq y\mid \mathcal{F}_L\big)\to\exp\big(-e^{-\sqrt{2}y+\log Z_\infty)}\big)\,\,a.s.$$

$$\mathcal{E}_t := \sum_{v \in N_t} \delta_{R_t(v) - m_t(1)}.$$

This is the point process of all particles near the maximum.

$$\mathcal{E}_t := \sum_{v \in N_t} \delta_{R_t(v) - m_t(1)}.$$

This is the point process of all particles near the maximum.

$${\mathcal E}_t := \sum_{v \in {\mathcal N}_t} \delta_{{\mathcal R}_t(v) - m_t(1)} \, .$$

This is the point process of all particles near the maximum.

$$\mathcal{E}_t := \sum_{v \in N_t} \delta_{R_t(v) - m_t(1)}.$$

This is the point process of all particles near the maximum.

$$\mathcal{E}_t := \sum_{v \in N_t} \delta_{R_t(v) - m_t(1)}.$$

This is the point process of all particles near the maximum.

 $\ensuremath{\mathbf{Q}}\xspace$: Where does the decorated Poisson point process come from?

Q: Where does the decorated Poisson point process come from? Using a (modified) first and second moment method, one can show, for any $K \in \mathbb{R}$:

$$\begin{split} \lim_{L,\ell\to\infty} \lim_{t\to\infty} \mathbb{P}\Big(\exists v,w\in N_t: R_t(v) > m_t(1) - K,\\ R_t(w) > m_t(1) - K, \textit{MRCA}(v,w) \in [L,t-\ell]\Big) = 0\,. \end{split}$$

This means all particles contributing to \mathcal{E}_t are either very close relatives (branched after time $t - \ell$, gives the decoration) or extremely distant relatives (branched before time *L*, essentially independent, gives the PPP).

Consider now $d \ge 2$.

Consider now $d \ge 2$.

• We are interested in those $B_t(v), v \in N_t$, such that

$$R_t(v) := \|B_t(v)\|$$
 is close to $R_t^* := \max_{v \in N_t} \|B_t(v)\|$

Consider now $d \ge 2$.

• We are interested in those $B_t(v), v \in N_t$, such that

$$R_t(v) := \|B_t(v)\|$$
 is close to $R_t^* := \max_{v \in N_t} \|B_t(v)\|$

• Compared to one-dimensional BBM:

Consider now $d \ge 2$.

• We are interested in those $B_t(v), v \in N_t$, such that

$$R_t(v) := \|B_t(v)\|$$
 is close to $R_t^* := \max_{v \in N_t} \|B_t(v)\|$

- Compared to one-dimensional BBM:
 - 1. The norm process $\{||B_t(v)||\}_{v \in N_t}$ is a branching Bessel(d) process— non-trivial technical issues

Consider now $d \ge 2$.

• We are interested in those $B_t(v), v \in N_t$, such that

$$R_t(v) := \|B_t(v)\|$$
 is close to $R^*_t := \max_{v \in N_t} \|B_t(v)\|$

- Compared to one-dimensional BBM:
 - 1. The norm process $\{||B_t(v)||\}_{v \in N_t}$ is a branching Bessel(d) process— non-trivial technical issues
 - no longer Gaussian, and there are a robust set of tools to handle Gaussian log-correlated fields
 - no longer shift-invariant (spatially inhomogeneous): in particular, the random-shift story gets complicated

Consider now $d \ge 2$.

• We are interested in those $B_t(v), v \in N_t$, such that

$$R_t(v) := \|B_t(v)\|$$
 is close to $R^*_t := \max_{v \in N_t} \|B_t(v)\|$

- Compared to one-dimensional BBM:
 - 1. The norm process $\{||B_t(v)||\}_{v \in N_t}$ is a branching Bessel(d) process— non-trivial technical issues
 - no longer Gaussian, and there are a robust set of tools to handle Gaussian log-correlated fields
 - no longer shift-invariant (spatially inhomogeneous): in particular, the random-shift story gets complicated
 - 2. There's a new spatial aspect— the angles in addition to the norms of the particles.

Fairly large gap in time between the 1d and multi-d results.

Previous results on the maximum of multidimensional BBM $(d \ge 2)$.

- 1. (Leading-order term, Biggins '95): $R_t^*/\sqrt{2}t \rightarrow 1$ a.s.
- 2. (Sub-leading-order term and tightness, Mallein '15): $m_t(d) = \sqrt{2}t + \frac{d-4}{2\sqrt{2}}\log t$, and $(R_t^* - m_t(d))_{t \ge 0}$ is tight

Theorem (K.-Lubetzky-Zeitouni, Ann. Appl. Prob. '23) *There exists a a.s.-positive random variable* Z_{∞} *such that*

$${R}^*_t - m_t(d) \Rightarrow \mathit{Gumbel} - rac{1}{\sqrt{2}} \log Z_\infty$$
 .

Consider the F-KPP reaction-diffusion equation:

$$\begin{cases} \partial_t u = \frac{1}{2} \Delta u + u(1-u) & \text{in } \mathbb{R}^d \\ u(0,x) = \phi(x) & \text{for } x \in \mathbb{R}^d \end{cases}$$

Consider the F-KPP reaction-diffusion equation:

$$\begin{cases} \partial_t u = \frac{1}{2} \Delta u + u(1-u) & \text{in } \mathbb{R}^d \\ u(0,x) = \phi(x) & \text{for } x \in \mathbb{R}^d \end{cases}$$

• Connection with BBM comes from McKean*:

Consider the F-KPP reaction-diffusion equation:

$$\begin{cases} \partial_t u = \frac{1}{2} \Delta u + u(1-u) & \text{in } \mathbb{R}^d \\ u(0,x) = \phi(x) & \text{for } x \in \mathbb{R}^d \end{cases}$$

 Connection with BBM comes from McKean*: for φ ∈ L[∞](ℝ^d), we can express u(t, x) as a multiplicative functional of BBM in ℝ^d.

Consider the F-KPP reaction-diffusion equation:

$$\begin{cases} \partial_t u = \frac{1}{2} \Delta u + u(1-u) & \text{in } \mathbb{R}^d \\ u(0,x) = \phi(x) & \text{for } x \in \mathbb{R}^d \end{cases}$$

- Connection with BBM comes from McKean*: for φ ∈ L[∞](ℝ^d), we can express u(t, x) as a multiplicative functional of BBM in ℝ^d.
- Example: $\phi(x) = \mathbb{1}_{\{\|x\| \le 1\}}$. Then for any $x \in \mathbb{R}^d$, $t \ge 0$, $u(t, x) = \mathbb{P}(\exists v \in N_t : B_t(v) \in \mathcal{B}(x, 1))$.

Consider the F-KPP reaction-diffusion equation:

$$\begin{cases} \partial_t u = \frac{1}{2} \Delta u + u(1-u) & \text{in } \mathbb{R}^d \\ u(0,x) = \phi(x) & \text{for } x \in \mathbb{R}^d \end{cases}$$

- Connection with BBM comes from McKean*: for φ ∈ L[∞](ℝ^d), we can express u(t, x) as a multiplicative functional of BBM in ℝ^d.
- Example: $\phi(x) = \mathbb{1}_{\{\|x\| \le 1\}}$. Then for any $x \in \mathbb{R}^d$, $t \ge 0$, $u(t, x) = \mathbb{P}(\exists v \in N_t : B_t(v) \in \mathcal{B}(x, 1))$.
- Gärtner '81: for any $x \in \mathbb{R}^d$ such that

$$||x|| = m_t^G(d) := \sqrt{2}t - \frac{d+2}{2\sqrt{2}}\log t$$
,

we have u(t, x) = 1/2.

F-KPP Equation :=
$$\begin{cases} \partial_t u = \frac{1}{2}\Delta u + u(1-u) & \text{in } \mathbb{R}^d \\ u(0,x) = \phi(x) & \text{for } x \in \mathbb{R}^d \end{cases}$$

- Example: $\phi(x) = \mathbb{1}_{\{\|x\| \le 1\}}$. Then for any $x \in \mathbb{R}^d$, $t \ge 0$, $u(t,x) = \mathbb{P}(\exists v \in N_t : B_t(v) \in \mathcal{B}(x,1))$.
- Gärtner '81: for any x ∈ ℝ^d such that ||x|| = m_t^G(d) explicit, we have u(t,x) = 1/2.

F-KPP Equation :=
$$\begin{cases} \partial_t u = \frac{1}{2}\Delta u + u(1-u) & \text{in } \mathbb{R}^d \\ u(0,x) = \phi(x) & \text{for } x \in \mathbb{R}^d \end{cases}$$

- Example: $\phi(x) = \mathbb{1}_{\{\|x\| \le 1\}}$. Then for any $x \in \mathbb{R}^d$, $t \ge 0$, $u(t,x) = \mathbb{P}(\exists v \in N_t : B_t(v) \in \mathcal{B}(x,1))$.
- Gärtner '81: for any x ∈ ℝ^d such that ||x|| = m_t^G(d) explicit, we have u(t, x) = 1/2.
- Says at time t, BBM particles "fill up" the ball of radius $\ll m_t^G(d)$.

F-KPP Equation :=
$$\begin{cases} \partial_t u = \frac{1}{2}\Delta u + u(1-u) & \text{in } \mathbb{R}^d \\ u(0,x) = \phi(x) & \text{for } x \in \mathbb{R}^d \end{cases}$$

- Example: $\phi(x) = \mathbb{1}_{\{\|x\| \le 1\}}$. Then for any $x \in \mathbb{R}^d$, $t \ge 0$, $u(t,x) = \mathbb{P}(\exists v \in N_t : B_t(v) \in \mathcal{B}(x,1))$.
- Gärtner '81: for any x ∈ ℝ^d such that ||x|| = m_t^G(d) explicit, we have u(t, x) = 1/2.
- Says at time t, BBM particles "fill up" the ball of radius $\ll m_t^G(d)$.
- Equivalently, the median of the maximum norm of BBM in any fixed strip of width 1 is m^G_t(d).

F-KPP Equation :=
$$\begin{cases} \partial_t u = \frac{1}{2}\Delta u + u(1-u) & \text{in } \mathbb{R}^d \\ u(0,x) = \phi(x) & \text{for } x \in \mathbb{R}^d \end{cases}$$

- Example: $\phi(x) = \mathbb{1}_{\{\|x\| \le 1\}}$. Then for any $x \in \mathbb{R}^d$, $t \ge 0$, $u(t,x) = \mathbb{P}(\exists v \in N_t : B_t(v) \in \mathcal{B}(x,1))$.
- Gärtner '81: for any x ∈ ℝ^d such that ||x|| = m_t^G(d) explicit, we have u(t, x) = 1/2.
- Says at time t, BBM particles "fill up" the ball of radius ≪ m^G_t(d).
- Equivalently, the median of the maximum norm of BBM in any fixed strip of width 1 is m^G_t(d).
- For d = 1, this gives the median size of the global maximum.

F-KPP Equation :=
$$\begin{cases} \partial_t u = \frac{1}{2}\Delta u + u(1-u) & \text{in } \mathbb{R}^d \\ u(0,x) = \phi(x) & \text{for } x \in \mathbb{R}^d \end{cases}$$

- Example: $\phi(x) = \mathbb{1}_{\{\|x\| \le 1\}}$. Then for any $x \in \mathbb{R}^d$, $t \ge 0$, $u(t, x) = \mathbb{P}(\exists v \in N_t : B_t(v) \in \mathcal{B}(x, 1))$.
- Gärtner '81: for any x ∈ ℝ^d such that ||x|| = m_t^G(d) explicit, we have u(t, x) = 1/2.
- Says at time t, BBM particles "fill up" the ball of radius ≪ m^G_t(d).
- Equivalently, the median of the maximum norm of BBM in any fixed strip of width 1 is m^G_t(d).
- For d = 1, this gives the median size of the global maximum. Purely PDE approach by Hamel, Nolen, Roquejoffre, Ryzhik.
 Question: PDE approach to the maximum of multi-d BBM?
• Norm of Brownian motion in \mathbb{R}^d is a *d*-dimensional Bessel process *R*.

• Norm of Brownian motion in \mathbb{R}^d is a *d*-dimensional Bessel process *R*.

$$\mathrm{d}R_t = \frac{d-1}{2R_t}\mathrm{d}t + \mathrm{d}W_t$$

• Spatially inhomogeneous Markov process on \mathbb{R} .

• Norm of Brownian motion in \mathbb{R}^d is a *d*-dimensional Bessel process *R*.

$$\mathrm{d}R_t = \frac{d-1}{2R_t}\mathrm{d}t + \mathrm{d}W_t$$

- Spatially inhomogeneous Markov process on $\mathbb R.$
- We study the *d*-dim. branching Bessel process $\{R_s(v)\}_{s>0, v \in N_s}$.

• Norm of Brownian motion in \mathbb{R}^d is a *d*-dimensional Bessel process *R*.

$$\mathrm{d}R_t = \frac{d-1}{2R_t}\mathrm{d}t + \mathrm{d}W_t$$

- Spatially inhomogeneous Markov process on $\mathbb R.$
- We study the *d*-dim. branching Bessel process $\{R_s(v)\}_{s>0, v \in N_s}$.
- **Girsanov transform** gives Radon-Nikodym derivative with a 1d Brownian motion on an interval of time [0, *t*]:

$$\mathrm{d}P^{R}\big|_{\mathcal{F}_{t}} = \underbrace{\left(\frac{W_{t}}{W_{0}}\right)^{\frac{d-1}{2}}}_{\substack{\text{start/endpoint} \\ \text{dependence}}} \underbrace{\exp\left(\int_{0}^{t} \frac{c_{d}}{W_{u}^{2}} \mathrm{d}u\right) \mathbb{1}_{\{W_{u} > 0, \ u \in [0,t]\}}}_{pathwise \ dependence} \mathrm{d}P^{W}\big|_{\mathcal{F}_{t}},$$

where $c_d > 0$ for $d \ge 3$ and $c_d < 0$ for d = 2.

Trajectories of the extremal particles

Let L, ℓ be parameters that we send to infinity after t (think: constants wrt t).

Consider the extremal point process.

$$\mathcal{E}_t := \sum_{v \in N_t} \delta_{(R_t(v) - m_t(d), \theta_t(v))}$$

Consider the extremal point process.

$$\mathcal{E}_t := \sum_{v \in N_t} \delta_{(R_t(v) - m_t(d), \theta_t(v))}$$

In the limit of the 1D extremal point process, we saw that the early history of the process was never forgotten: became a random shift of all the points on the real line. Consider the extremal point process.

$$\mathcal{E}_t := \sum_{v \in N_t} \delta_{(R_t(v) - m_t(d), \theta_t(v))}$$

In the limit of the 1D extremal point process, we saw that the early history of the process was never forgotten: became a random shift of all the points on the real line.

Key question: how does the early history of the process affect the distribution of the angles at later times, if at all?

Let *L* be a parameter going to infinity *after* $t \to \infty$ (so, with respect to *t*, *L* is a large but fixed constant).

Claim. If $v \in N_t$ is such that $R_t(v) > m_t(d)$, then $\|\theta_t(v) - \theta_L(v)\| = o(1)$ with high probability, where $o(1) \to 0$ after first $t \to \infty$ then $L \to \infty$.

Let *L* be a parameter going to infinity *after* $t \to \infty$ (so, with respect to *t*, *L* is a large but fixed constant).

Claim. If $v \in N_t$ is such that $R_t(v) > m_t(d)$, then $\|\theta_t(v) - \theta_L(v)\| = o(1)$ with high probability, where $o(1) \to 0$ after first $t \to \infty$ then $L \to \infty$.

In words, the angle of an extremal particle at time t does not change after time L, where $L = O_t(1)$.

Proof of claim (angles of extremals freeze after O(1) **time)**

Claim. If $v \in N_t$ is such that $R_t(v) > m_t(d)$, then $\|\theta_t(v) - \theta_L(v)\| = o(1)$ with high probability, where $o(1) \to 0$ after first $t \to \infty$ then $L \to \infty$.

Proof of claim (angles of extremals freeze after O(1) **time)**

Claim. If $v \in N_t$ is such that $R_t(v) > m_t(d)$, then $\|\theta_t(v) - \theta_L(v)\| = o(1)$ with high probability, where $o(1) \to 0$ after first $t \to \infty$ then $L \to \infty$.

Proof Let $z := \sqrt{2}L - R_L(v) \asymp \sqrt{L}$ (we know this from the "window" event)

+exponential tail bounds on the max. displacement of BBM in \mathbb{R}^d . ²⁵

• Upshot: the angles in the "early history" (time *L*) actually determine the angles of the extremal process at time *t*.

• Upshot: the angles in the "early history" (time *L*) actually determine the angles of the extremal process at time *t*. How to quantify this?

- Upshot: the angles in the "early history" (time *L*) actually determine the angles of the extremal process at time *t*. How to quantify this?
- Stasiński, J. Berestycki, and Mallein construct a random measure D_∞(θ)Leb(dθ) on the sphere S^{d-1} that turns out to contain the info of the angles in the "early history."

- Upshot: the angles in the "early history" (time *L*) actually determine the angles of the extremal process at time *t*. How to quantify this?
- Stasiński, J. Berestycki, and Mallein construct a random measure D_∞(θ)Leb(dθ) on the sphere S^{d-1} that turns out to contain the info of the angles in the "early history."
- For fixed $\theta \in \mathbb{S}^{d-1}$, the projection of the BBM onto θ is a **1d BBM**

- Upshot: the angles in the "early history" (time *L*) actually determine the angles of the extremal process at time *t*. How to quantify this?
- Stasiński, J. Berestycki, and Mallein construct a random measure D_∞(θ)Leb(dθ) on the sphere S^{d-1} that turns out to contain the info of the angles in the "early history."
- For fixed θ ∈ S^{d-1}, the projection of the BBM onto θ is a 1d BBM {B_s(v) · θ}_{v∈Ns,s≥0}.

- Upshot: the angles in the "early history" (time *L*) actually determine the angles of the extremal process at time *t*. How to quantify this?
- Stasiński, J. Berestycki, and Mallein construct a random measure D_∞(θ)Leb(dθ) on the sphere S^{d-1} that turns out to contain the info of the angles in the "early history."
- For fixed θ ∈ S^{d-1}, the projection of the BBM onto θ is a 1d BBM {B_s(v) · θ}_{v∈N_s,s≥0}. Let D_∞(θ) denote the random shift corresponding to the max. of this 1d BBM.

- Upshot: the angles in the "early history" (time *L*) actually determine the angles of the extremal process at time *t*. How to quantify this?
- Stasiński, J. Berestycki, and Mallein construct a random measure D_∞(θ)Leb(dθ) on the sphere S^{d-1} that turns out to contain the info of the angles in the "early history."
- For fixed θ ∈ S^{d-1}, the projection of the BBM onto θ is a 1d BBM {B_s(v) · θ}_{v∈N_s,s≥0}. Let D_∞(θ) denote the random shift corresponding to the max. of this 1d BBM.
- They show D_∞(θ) converges simultaneously a.s. for Lebesgue-a.e. θ ∈ S^{d-1}.

- Upshot: the angles in the "early history" (time *L*) actually determine the angles of the extremal process at time *t*. How to quantify this?
- Stasiński, J. Berestycki, and Mallein construct a random measure D_∞(θ)Leb(dθ) on the sphere S^{d-1} that turns out to contain the info of the angles in the "early history."
- For fixed θ ∈ S^{d-1}, the projection of the BBM onto θ is a 1d BBM {B_s(v) · θ}_{v∈N_s,s≥0}. Let D_∞(θ) denote the random shift corresponding to the max. of this 1d BBM.
- They show D_∞(θ) converges simultaneously a.s. for Lebesgue-a.e. θ ∈ S^{d-1}.
 - $D_{\infty}(\theta)$ is only defined as a function Leb-a.e., but still makes for a perfectly good density.

- Upshot: the angles in the "early history" (time *L*) actually determine the angles of the extremal process at time *t*. How to quantify this?
- Stasiński, J. Berestycki, and Mallein construct a random measure D_∞(θ)Leb(dθ) on the sphere S^{d-1} that turns out to contain the info of the angles in the "early history."
- For fixed θ ∈ S^{d-1}, the projection of the BBM onto θ is a 1d BBM {B_s(v) · θ}_{v∈N_s,s≥0}. Let D_∞(θ) denote the random shift corresponding to the max. of this 1d BBM.
- They show D_∞(θ) converges simultaneously a.s. for Lebesgue-a.e. θ ∈ S^{d-1}.
 - D_∞(θ) is only defined as a function Leb-a.e., but still makes for a perfectly good density.
- (Aside) We later proved that the random shift Z_{∞} of the $d \ge 2$ BBM maximum is given by the total mass $D_{\infty}(\mathbb{S}^{d-1})$.

Extremal landscape in \mathbb{R}^d : the extremal point process

Recall the extremal point process $\mathcal{E}_t := \sum_{v \in N_t} \delta_{(R_t(v) - m_t(d), \theta_t(v))}$

Extremal landscape in \mathbb{R}^d : the extremal point process

Recall the extremal point process $\mathcal{E}_t := \sum_{v \in N_t} \delta_{(R_t(v) - m_t(d), \theta_t(v))}$

Theorem (Berestycki-K.-L.-Mallein-Z., Ann. Prob '24+)

• Let $(\chi_i, \theta_i)_{i \in \mathbb{N}} \subset \mathbb{R}_+ imes \mathbb{S}^{d-1}$ be the points of a

$$\operatorname{PPP}(C_d e^{-\sqrt{2}x} \mathrm{d}x \times D_\infty(\theta) \mathrm{Leb}(d\theta)),$$

for some constant $C_d > 0$.

Let {D⁽ⁱ⁾}_{i∈ℕ} be a collection of iid point processes with the same law as the decorations from the 1D BBM case.

Then (weakly in the topology of vague convergence)

$$\mathcal{E}_t \to \mathcal{E}_\infty := \sum_{i \in \mathbb{N}} \sum_{r \in \mathcal{D}^{(i)}} \delta_{(\chi_i + r, \theta_i)}.$$

Theorem from last slide: Recall $\mathcal{E}_t := \sum_{v \in N_t} \delta_{(R_t(v) - m_t(d), \theta_t(v))}$. Then

$$\mathcal{E}_t o \mathcal{E}_\infty := \sum_{i \in \mathbb{N}} \sum_{r \in \mathcal{D}^{(i)}} \delta_{(\chi_i + r, \theta_i)}$$

Q: Why are there no angular decorations?

Theorem from last slide: Recall $\mathcal{E}_t := \sum_{v \in N_t} \delta_{(R_t(v) - m_t(d), \theta_t(v))}$.

Then

$$\mathcal{E}_t \to \mathcal{E}_\infty := \sum_{i \in \mathbb{N}} \sum_{r \in \mathcal{D}^{(i)}} \delta_{(\chi_i + r, \theta_i)}.$$

Q: Why are there no angular decorations?

A: We measure angles from the origin, but the clusters have diameter $O(1) \implies$ in the limit, the different angles in a cluster all get squashed.

• Measuring the angles from the origin caused us to lose information of the "landscape" around each leader.

• Measuring the angles from the origin caused us to lose information of the "landscape" around each leader.

- Measuring the angles from the origin caused us to lose information of the "landscape" around each leader.
- What if we view the extremal point process from the maximal particle u^{*}_t instead:

$$\mathcal{E}_t^{cluster} := \sum_{v \in \mathcal{N}_t} \delta_{\mathcal{R}_{\theta_t^*}(B_t(v) - B_t(u_t^*))} \to \mathcal{E}_{\infty}^{cluster}?$$

(Here, $\mathcal{R}_{\theta_t^*}$ is the rotation sending θ_t^* to e_1)

- Measuring the angles from the origin caused us to lose information of the "landscape" around each leader.
- What if we view the extremal point process from the maximal particle u^{*}_t instead:

$$\mathcal{E}_t^{cluster} := \sum_{v \in N_t} \delta_{\mathcal{R}_{\theta_t^*}(B_t(v) - B_t(u_t^*))} \to \mathcal{E}_{\infty}^{cluster}?$$

(Here, $\mathcal{R}_{\theta_t^*}$ is the rotation sending θ_t^* to e_1)

• Heuristic: Only particles that branched after t - O(1)-time contribute to the above.

- Measuring the angles from the origin caused us to lose information of the "landscape" around each leader.
- What if we view the extremal point process from the maximal particle u^{*}_t instead:

$$\mathcal{E}_t^{cluster} := \sum_{v \in N_t} \delta_{\mathcal{R}_{\theta_t^*}(B_t(v) - B_t(u_t^*))} \to \mathcal{E}_{\infty}^{cluster}?$$

(Here, $\mathcal{R}_{\theta_t^*}$ is the rotation sending θ_t^* to e_1)

Heuristic: Only particles that branched after t − O(1)-time contribute to the above. The transversal spread of these particles is O(1), while the radial distance is m_t(d) ~ √2t.

- Measuring the angles from the origin caused us to lose information of the "landscape" around each leader.
- What if we view the extremal point process from the maximal particle u^{*}_t instead:

$$\mathcal{E}_t^{cluster} := \sum_{v \in N_t} \delta_{\mathcal{R}_{\theta_t^*}(B_t(v) - B_t(u_t^*))} \to \mathcal{E}_{\infty}^{cluster}?$$

(Here, $\mathcal{R}_{\theta_t^*}$ is the rotation sending θ_t^* to e_1)

Heuristic: Only particles that branched after t − O(1)-time contribute to the above. The transversal spread of these particles is O(1), while the radial distance is m_t(d) ~ √2t.
⇒ transversal spread has no impact on the norm

- Measuring the angles from the origin caused us to lose information of the "landscape" around each leader.
- What if we view the extremal point process from the maximal particle u^{*}_t instead:

$$\mathcal{E}_t^{cluster} := \sum_{v \in N_t} \delta_{\mathcal{R}_{\theta_t^*}(B_t(v) - B_t(u_t^*))} \to \mathcal{E}_{\infty}^{cluster}?$$

(Here, $\mathcal{R}_{\theta_t^*}$ is the rotation sending θ_t^* to e_1)

Heuristic: Only particles that branched after t − O(1)-time contribute to the above. The transversal spread of these particles is O(1), while the radial distance is m_t(d) ~ √2t.
⇒ transversal spread has no impact on the norm
⇒ the transversal motion of each particle in the cluster after time t − O(1) ≈ d − 1 dimensional BM's, independent after conditioning on the genealogical tree.

Extremal BBM landscape: the angular decorations

Theorem (K., Zeitouni '24, Description of the extremal cluster)

$$\mathcal{E}_t^{cluster} := \sum_{v \in \mathbb{N}_t} \delta_{\mathcal{R}_{\theta_t^*}(B_t(v) - B_t(u_t^*))} \xrightarrow{\text{(d)}} \mathcal{E}_{\infty}^{cluster} ,$$

where $\mathcal{E}_{\infty}^{cluster}$ is described below.

Theorem (K., Zeitouni '24, Description of the extremal cluster)

$$\mathcal{E}_t^{cluster} := \sum_{v \in N_t} \delta_{\mathcal{R}_{\theta_t^*}(B_t(v) - B_t(u_t^*))} \xrightarrow{\text{(d)}} \mathcal{E}_{\infty}^{cluster},$$

where $\mathcal{E}_{\infty}^{cluster}$ is described below.

Theorem (K., Zeitouni '24, Description of the extremal cluster)

$$\mathcal{E}_t^{cluster} := \sum_{v \in N_t} \delta_{\mathcal{R}_{\theta_t^*}(B_t(v) - B_t(u_t^*))} \xrightarrow{(\mathrm{d})} \mathcal{E}_{\infty}^{cluster} ,$$

where $\mathcal{E}_{\infty}^{cluster}$ is described below.

We generate *E*^{cluster}_∞ as the superposition of various *d*-dimensional BBM clouds.

Theorem (K., Zeitouni '24, Description of the extremal cluster)

$$\mathcal{E}_t^{cluster} := \sum_{v \in N_t} \delta_{\mathcal{R}_{\theta_t^*}(B_t(v) - B_t(u_t^*))} \xrightarrow{(\mathrm{d})} \mathcal{E}_{\infty}^{cluster} ,$$

where $\mathcal{E}_{\infty}^{cluster}$ is described below.

- We generate \$\mathcal{E}_{\infty}^{cluster}\$ as the superposition of various d-dimensional BBM clouds.
- For simplicity, let's focus on d = 2.
$\mathcal{E}_{\infty}^{\textit{cluster}}$ can be generated by the following process:

 $\mathcal{E}_{\infty}^{\textit{cluster}}$ can be generated by the following process:

1. (Backwards path of maximal particle) Define a particle $\xi,$ the "spine", and its path

$$(\mathcal{S}_s(\xi))_{s\geq 0} \approx \left(-\sqrt{2}s - R_s(\xi), Y_s(\xi)\right)_{s\geq 0},$$

where $R_{\cdot}(\xi)$ is Bessel(3) started from 0, and $Y_{\cdot}(\xi)$ is an independent standard 1D Brownian motion.

 $\mathcal{E}_{\infty}^{\textit{cluster}}$ can be generated by the following process:

1. (Backwards path of maximal particle) Define a particle $\xi,$ the "spine", and its path

$$(\mathcal{S}_s(\xi))_{s\geq 0} \approx \left(-\sqrt{2}s - R_s(\xi), Y_s(\xi)\right)_{s\geq 0},$$

where $R_{\cdot}(\xi)$ is Bessel(3) started from 0, and $Y_{\cdot}(\xi)$ is an independent standard 1D Brownian motion.

2. (Branching times) At random branching times $0 < \tau_1 < \tau_2 < \dots$ (\approx PPP(2dt)), the particle ξ produces a 2D BBM, started from $S_{\tau_i}(\xi)$, run for time τ_i . $\mathcal{E}_{\infty}^{\textit{cluster}}$ can be generated by the following process:

1. (Backwards path of maximal particle) Define a particle $\xi,$ the "spine", and its path

$$(\mathcal{S}_s(\xi))_{s\geq 0} \approx \left(-\sqrt{2}s - R_s(\xi), Y_s(\xi)\right)_{s\geq 0},$$

where $R_{(\xi)}$ is Bessel(3) started from 0, and $Y_{(\xi)}$ is an independent standard 1D Brownian motion.

2. (Branching times) At random branching times $0 < \tau_1 < \tau_2 < \dots (\approx \text{PPP}(2dt))$, the particle ξ produces a 2D BBM, started from $S_{\tau_i}(\xi)$, run for time τ_i .

$$\mathcal{P}^{(i)} := \sum_{v \in N_{\tau_i}^{(i)}} \delta_{\mathcal{S}_{\tau_i}(\xi) + (X_{\tau_i}^{(i)}(v), Y_{\tau_i}^{(i)}(v))},$$

 $Y_s^{(i)}(v)$ is an indep. Brownian motion.

$$\mathcal{P}^{(i)} := \sum_{\mathbf{v} \in \mathcal{N}_{\tau_i}^{(i)}} \delta_{\mathcal{S}_{\tau_i}(\xi) + (X_{\tau_i}^{(i)}(\mathbf{v}), Y_{\tau_i}^{(i)}(\mathbf{v}))}$$

Extremal BBM landscape: the angular decorations

$$\mathcal{P}^{(i)} := \sum_{v \in N_{\tau_i}^{(i)}} \delta_{S_{\tau_i}(\xi) + (X_{\tau_i}^{(i)}(v), Y_{\tau_i}^{(i)}(v))}$$

4. Summing up these point processes gives a (slightly simplified) description of the extremal cluster: $\mathcal{E}_{\infty}^{cluster} \approx \delta_{(0,0)} + \sum_{i=1}^{\infty} \mathcal{P}^{(i)}$.

4. Summing up these point processes gives a (slightly simplified) description of the extremal cluster: $\mathcal{E}_{\infty}^{cluster} \approx \delta_{(0,0)} + \sum_{i=1}^{\infty} \mathcal{P}^{(i)}$.

4. Summing up these point processes gives a (slightly simplified) description of the extremal cluster: $\mathcal{E}_{\infty}^{cluster} \approx \delta_{(0,0)} + \sum_{i=1}^{\infty} \mathcal{P}^{(i)}$.

• Recall $\mathcal{E}_t^{cluster}$ is the BBM point process rotated+shifted so the max. particle u^* at time t lies at $0 \in \mathbb{R}^d$.

- Recall $\mathcal{E}_t^{cluster}$ is the BBM point process rotated+shifted so the max. particle u^* at time t lies at $0 \in \mathbb{R}^d$.
- "Look back" from u*: consider the highest particle with x-coordinate in [-sL, -sL + 1], where s > 0 and L > 0 is the scaling parameter.

- Recall $\mathcal{E}_t^{cluster}$ is the BBM point process rotated+shifted so the max. particle u^* at time t lies at $0 \in \mathbb{R}^d$.
- "Look back" from u*: consider the highest particle with x-coordinate in [-sL, -sL + 1], where s > 0 and L > 0 is the scaling parameter.
- The **front** of the BBM (around u^*):

$$h_{t,L}(s) := \max\left\{p_i^{(2)}: (p_i^{(1)}, p_i^{(2)}) \in \mathcal{E}_t^{\textit{cluster}}, \ p_i^{(1)} \in [-sL, -sL+1]
ight\}$$

- Recall $\mathcal{E}_t^{cluster}$ is the BBM point process rotated+shifted so the max. particle u^* at time t lies at $0 \in \mathbb{R}^d$.
- "Look back" from u*: consider the highest particle with x-coordinate in [-sL, -sL + 1], where s > 0 and L > 0 is the scaling parameter.
- The **front** of the BBM (around u^*):

$$h_{t,L}(s) := \max\left\{p_i^{(2)}: (p_i^{(1)}, p_i^{(2)}) \in \mathcal{E}_t^{\textit{cluster}}, \ p_i^{(1)} \in [-sL, -sL+1]
ight\}$$

Pictures of the front

The **front** of the BBM (around u^* , d = 2):

$$h_{t,L}(s) := \max \left\{ p_i^{(2)} : (p_i^{(1)}, p_i^{(2)}) \in \mathcal{E}_t^{cluster}, \ p_i^{(1)} \in [-sL, -sL+1] \right\}.$$

Pictures of the front

The **front** of the BBM (around u^* , d = 2): $h_{t,L}(s) := \max \left\{ p_i^{(2)} : (p_i^{(1)}, p_i^{(2)}) \in \mathcal{E}_t^{cluster}, p_i^{(1)} \in [-sL, -sL+1] \right\}.$

Pictures of the front

The **front** of the BBM (around u^* , d = 2): $h_{t,L}(s) := \max \left\{ p_i^{(2)} : (p_i^{(1)}, p_i^{(2)}) \in \mathcal{E}_t^{cluster}, p_i^{(1)} \in [-sL, -sL+1] \right\}.$

The shape of the front

The **front** of the BBM (around u^* , d = 2): $h_{t,L}(s) := \max \left\{ p_i^{(2)} : (p_i^{(1)}, p_i^{(2)}) \in \mathcal{E}_t^{cluster}, p_i^{(1)} \in [-sL, -sL+1] \right\}.$

Theorem (K., Zeitouni '24)

We have the following weak convergence of the front

$$\left(8^{-\frac{1}{4}}L^{-\frac{3}{2}}h_{t,L}(s)\right)_{s\in[0,\infty)}\Rightarrow(\rho_s)_{s\in[0,\infty)}$$

as first $t \to \infty,$ then $L \to \infty,$ where

$$\rho_{s} := \left(\max_{\sigma>0} \sigma s - \sigma R_{\sigma}\right)^{1/2}$$

and $R_{.}$ is a Bessel(3) process.

The shape of the front

The **front** of the BBM (around u^* , d = 2): $h_{t,L}(s) := \max \left\{ p_i^{(2)} : (p_i^{(1)}, p_i^{(2)}) \in \mathcal{E}_t^{cluster}, p_i^{(1)} \in [-sL, -sL+1] \right\}.$

Theorem (K., Zeitouni '24)

We have the following weak convergence of the front

$$\left(8^{-\frac{1}{4}}L^{-\frac{3}{2}}h_{t,L}(s)\right)_{s\in[0,\infty)}\Rightarrow(\rho_s)_{s\in[0,\infty)}$$

as first $t \to \infty,$ then $L \to \infty,$ where

$$\rho_{s} := \left(\max_{\sigma>0} \sigma s - \sigma R_{\sigma}\right)^{1/2}$$

and $R_{.}$ is a Bessel(3) process.

For any $d \ge 2$, the front converges to the paraboloid formed by rotating $\rho_{.}$ around the x-axis.

Let's understand the $L^{3/2}$ behavior of $h_{t,L}(s)$, say for s = 1, d = 2.

Let's understand the $L^{3/2}$ behavior of $h_{t,L}(s)$, say for s = 1, d = 2.

• Due to weak convergence of $\mathcal{E}_t^{cluster}$ to the explicit point process $\mathcal{E}_{\infty}^{cluster}$ as $t \to \infty$, it suffices to study the front of $\mathcal{E}_{\infty}^{cluster}$:

$$h_L(s) := \max\left\{p_i^{(2)}: p_i \in \mathcal{E}_\infty^{cluster}, p_i^{(1)} \in [-sL, -sL+1]
ight\}$$

• Want to understand the maximum height amongst all particles of $\mathcal{E}_{\infty}^{cluster}$ in the strip $[-L, -L+1) \times \infty$.

- Want to understand the maximum height amongst all particles of $\mathcal{E}_{\infty}^{cluster}$ in the strip $[-L, -L+1) \times \infty$.
- Recall: $\mathcal{E}_{\infty}^{cluster} \approx \delta_{(0,0)} + \text{ shifted BBM clouds.}$

- Want to understand the maximum height amongst all particles of $\mathcal{E}_{\infty}^{cluster}$ in the strip $[-L, -L+1) \times \infty$.
- Recall: $\mathcal{E}_{\infty}^{cluster} \approx \delta_{(0,0)} + \text{ shifted BBM clouds.}$
- Consider the contribution of each BBM cloud separately:

$$h_L(s) = \max_{i \in \mathbb{N}} \max_{i^{th} \text{ BBM cloud}} \left\{ \text{vertical displacement in } [-sL, -sL+1] imes \infty
ight\}$$

 There will be an exponential number of particles (in *L*) in this strip → we'll ignore polynomial terms.

- Want to understand the maximum height amongst all particles of $\mathcal{E}_{\infty}^{cluster}$ in the strip $[-L, -L+1) \times \infty$.
- Recall: $\mathcal{E}_{\infty}^{cluster} \approx \delta_{(0,0)} + \text{ shifted BBM clouds.}$
- Consider the contribution of each BBM cloud separately:

$$h_L(s) = \max_{i \in \mathbb{N}} \max_{i^{th} \text{ BBM cloud}} \left\{ \text{vertical displacement in } [-sL, -sL+1] imes \infty
ight\}$$

- There will be an exponential number of particles (in *L*) in this strip → we'll ignore polynomial terms.
- Also, to leading-order, the max. of log-correlated fields agrees with the max. of iid fields → we'll pretend the particle trajectories are *independent* Brownian motions.

Consider the BBM cloud born at time τ . It is born on the spine: initial position is $(-\sqrt{2}\tau - R_{\tau}(\xi), Y_{\tau}(\xi))$, where *R*. is Bessel(3) and *Y* is BM.

Consider the BBM cloud born at time τ . It is born on the spine: initial position is $(-\sqrt{2}\tau - R_{\tau}(\xi), Y_{\tau}(\xi))$, where *R*. is Bessel(3) and *Y* is BM. Define $\alpha_{\tau} := \tau^{-1/2}R_{\tau}(\xi) = O(1)$.

Consider the BBM cloud born at time τ . It is born on the spine: initial position is $(-\sqrt{2}\tau - R_{\tau}(\xi), Y_{\tau}(\xi))$, where R. is Bessel(3) and Y is BM. Define $\alpha_{\tau} := \tau^{-1/2}R_{\tau}(\xi) = O(1)$.

 $\mathbb{E}[\# \mathsf{particles} \ \mathsf{w}/ \ \mathsf{x}\text{-coord.} \ \mathsf{in} \ [-L, -L+1]] \approx \mathsf{poly}(L) e^{\tau} e^{-\frac{(\sqrt{2}\tau + \alpha_\tau \sqrt{\tau} - L)^2}{2\tau}}$

$$= \operatorname{poly}(L) \exp\left(-\alpha_{\tau}\sqrt{2\tau} + L\sqrt{2} + \frac{\alpha_{\tau}L}{\sqrt{\tau}} - \frac{L^2}{2\tau}\right) =: \mathbf{N}.$$

Consider the BBM cloud born at time τ . It is born on the spine: initial position is $(-\sqrt{2}\tau - R_{\tau}(\xi), Y_{\tau}(\xi))$, where R. is Bessel(3) and Y is BM. Define $\alpha_{\tau} := \tau^{-1/2}R_{\tau}(\xi) = O(1)$.

 $\mathbb{E}[\# \mathsf{particles} \ \mathsf{w}/ \ \mathsf{x}\text{-coord.} \ \mathsf{in} \ [-L, -L+1]] \approx \mathsf{poly}(L) e^{\tau} e^{-\frac{(\sqrt{2}\tau + \alpha_\tau \sqrt{\tau} - L)^2}{2\tau}}$

$$= \mathsf{poly}(L) \exp \left(-lpha_ au \sqrt{2 au} + L\sqrt{2} + rac{lpha_ au L}{\sqrt{ au}} - rac{L^2}{2 au}
ight) =: \mathbf{N}$$
 .

We're then interested in the max. \mathbf{M}_{τ} of \mathbf{N} iid $\sim \mathcal{N}(0, \tau)$.

Consider the BBM cloud born at time τ . It is born on the spine: initial position is $(-\sqrt{2}\tau - R_{\tau}(\xi), Y_{\tau}(\xi))$, where R. is Bessel(3) and Y is BM. Define $\alpha_{\tau} := \tau^{-1/2}R_{\tau}(\xi) = O(1)$.

 $\mathbb{E}[\# \text{particles w} / \text{x-coord. in } [-L, -L+1]] \approx \text{poly}(L)e^{\tau}e^{-\frac{(\sqrt{2}\tau + \alpha_{\tau}\sqrt{\tau} - L)^2}{2\tau}}$

$$= \operatorname{poly}(L) \exp\left(-\alpha_{\tau}\sqrt{2\tau} + L\sqrt{2} + \frac{\alpha_{\tau}L}{\sqrt{\tau}} - \frac{L^2}{2\tau}\right) =: \mathbf{N}.$$

We're then interested in the max. \mathbf{M}_{τ} of \mathbf{N} iid $\sim \mathcal{N}(\mathbf{0}, \tau)$.

Solve:
$$e^{\mathbf{M}_{\tau}^{2}/2\tau} = e^{\mathbf{N}} \implies \mathbf{M}_{\tau}^{2} = 2\left(-\alpha_{\tau}\sqrt{2}\tau^{3/2} + \sqrt{2}L\tau + \alpha_{\tau}L\tau^{1/2} - \frac{L^{2}}{2}\right)$$

Consider the BBM cloud born at time τ . It is born on the spine: initial position is $(-\sqrt{2}\tau - R_{\tau}(\xi), Y_{\tau}(\xi))$, where R. is Bessel(3) and Y is BM. Define $\alpha_{\tau} := \tau^{-1/2}R_{\tau}(\xi) = O(1)$.

 $\mathbb{E}[\# \text{particles w} / \text{x-coord. in } [-L, -L+1]] \approx \text{poly}(L)e^{\tau}e^{-\frac{(\sqrt{2}\tau + \alpha_{\tau}\sqrt{\tau} - L)^2}{2\tau}}$

$$= \operatorname{poly}(L) \exp\left(-\alpha_{\tau}\sqrt{2\tau} + L\sqrt{2} + \frac{\alpha_{\tau}L}{\sqrt{\tau}} - \frac{L^2}{2\tau}\right) =: \mathbf{N}.$$

We're then interested in the max. \mathbf{M}_{τ} of \mathbf{N} iid $\sim \mathcal{N}(\mathbf{0}, \tau)$.

Solve:
$$e^{\mathbf{M}_{\tau}^2/2\tau} = e^{\mathbf{N}} \implies \mathbf{M}_{\tau}^2 = 2\left(-\alpha_{\tau}\sqrt{2}\tau^{3/2} + \sqrt{2}L\tau + \alpha_{\tau}L\tau^{1/2} - \frac{L^2}{2}\right)$$

Treating α_{τ} as constant and optimizing over τ yields $\tau \simeq L^2$, and thus $\mathbf{M}_{\tau} \simeq \tau^{3/2}$.

Consider the BBM cloud born at time τ . It is born on the spine: initial position is $(-\sqrt{2}\tau - R_{\tau}(\xi), Y_{\tau}(\xi))$, where R. is Bessel(3) and Y is BM. Define $\alpha_{\tau} := \tau^{-1/2}R_{\tau}(\xi) = O(1)$.

 $\mathbb{E}[\# \text{particles w} / \text{ x-coord. in } [-L, -L+1]] \approx \mathsf{poly}(L) e^{\tau} e^{-\frac{(\sqrt{2}\tau + \alpha_{\tau}\sqrt{\tau} - L)^2}{2\tau}}$

$$= \operatorname{poly}(L) \exp\left(-\alpha_{\tau}\sqrt{2\tau} + L\sqrt{2} + \frac{\alpha_{\tau}L}{\sqrt{\tau}} - \frac{L^2}{2\tau}\right) =: \mathbf{N}.$$

We're then interested in the max. \mathbf{M}_{τ} of \mathbf{N} iid $\sim \mathcal{N}(\mathbf{0}, \tau)$.

Solve:
$$e^{\mathbf{M}_{\tau}^2/2\tau} = e^{\mathbf{N}} \implies \mathbf{M}_{\tau}^2 = 2\left(-\alpha_{\tau}\sqrt{2}\tau^{3/2} + \sqrt{2}L\tau + \alpha_{\tau}L\tau^{1/2} - \frac{L^2}{2}\right)$$

Treating α_{τ} as constant and optimizing over τ yields $\tau \asymp L^2$, and thus $\mathbf{M}_{\tau} \asymp \tau^{3/2}$. Write $\tau = \sigma L^2$:

$$\mathbf{M}_{s}^{2} \approx 2\sqrt{2}L^{3}\left(\sigma - \sigma \frac{R_{\sigma L^{2}}(\xi)}{L}\right)$$

Consider the BBM cloud born at time τ . It is born on the spine: initial position is $(-\sqrt{2}\tau - R_{\tau}(\xi), Y_{\tau}(\xi))$, where R. is Bessel(3) and Y is BM. Define $\alpha_{\tau} := \tau^{-1/2}R_{\tau}(\xi) = O(1)$.

 $\mathbb{E}[\# \text{particles w} / \text{x-coord. in } [-L, -L+1]] \approx \text{poly}(L)e^{\tau}e^{-\frac{(\sqrt{2}\tau + \alpha_{\tau}\sqrt{\tau} - L)^2}{2\tau}}$

$$= \operatorname{poly}(L) \exp\left(-\alpha_{\tau}\sqrt{2\tau} + L\sqrt{2} + \frac{\alpha_{\tau}L}{\sqrt{\tau}} - \frac{L^2}{2\tau}\right) =: \mathbf{N}.$$

We're then interested in the max. \mathbf{M}_{τ} of \mathbf{N} iid $\sim \mathcal{N}(\mathbf{0}, \tau)$.

Solve:
$$e^{\mathbf{M}_{\tau}^{2}/2\tau} = e^{\mathbf{N}} \implies \mathbf{M}_{\tau}^{2} = 2\left(-\alpha_{\tau}\sqrt{2}\tau^{3/2} + \sqrt{2}L\tau + \alpha_{\tau}L\tau^{1/2} - \frac{L^{2}}{2}\right)$$

Treating α_{τ} as constant and optimizing over τ yields $\tau \asymp L^2$, and thus $\mathbf{M}_{\tau} \asymp \tau^{3/2}$. Write $\tau = \sigma L^2$:

$$\mathbf{M}_{s}^{2} \approx 2\sqrt{2}L^{3}\left(\sigma - \sigma \frac{R_{\sigma L^{2}}(\xi)}{L}\right) \Rightarrow h_{L}(1) \approx 8^{\frac{1}{4}}L^{\frac{3}{2}} \max_{\sigma \geq 0} \left(\sigma - \sigma \frac{R_{\sigma L^{2}}(\xi)}{L}\right)^{1/2}.$$

$h_L(s) = \max_{i \in \mathbb{N}} \max_{i^{th} \text{ BBM cloud}} \left\{ \text{vertical displacement in } [-sL, -sL + 1] \times \infty \right\}$

 $h_L(s) = \max_{i \in \mathbb{N}} \max_{i^{th} \text{ BBM cloud}} \Big\{ \text{vertical displacement in } [-sL, -sL+1] \times \infty \Big\}$

- Avoids any modified second moment method that has become standard in the study of log-correlated fields.
- Proceeds by
 - 1. Localizing the set of birth times of the BBM clouds which contribute to $L^{-3/2}h_L(s)$
 - 2. Understanding how much space is filled by each of these BBM clouds

