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Branching Brownian motion (BBM)

Fix the dimension d ≥ 1.

• Start: a single particle v at 0 performs Brownian motion in

Rd (iid 1d BM’s in each coordinate)

Bs(v) = (B1
s (v), . . . ,Bd

s (v)) ∈ Rd

• After exp(1) distributed time, the particle splits into two

particles, which evolve independently from that time onward.

• Repeat.
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Model Definition

Quick notation/facts.

• Let Nt := set of particles at time t.

• B.(v) := (Brownian) path of the particle v .

• E|Nt | = et

• For each coordinate index i , Cov(B i
t(v),B i

t(w)) = branching

time of v and w
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Covariance computation

Consider particles v ,w ∈ Nt , where v and w split at time s.

E
[
Bt(v)Bt(w)

∣∣ splitting times
]

= E
[(

Bt(v)− Bs(v) + Bs(v)
)(

Bt(w)− Bs(w) + Bs(v)
) ∣∣ spl. times

]
= E

[
Bs(v)2

∣∣ spl. times
]

= s
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BBM is a “log-correlated field”

• Consider some time t ≥ 0, and consider some particle v ∈ Nt .

• Consider B(v , k) := {w ∈ Nt : Cov(Bt(v),Bt(w)) ≥ k}.

• Last slide: the particles that branched from v after time k :

• Embed the tree into [0, 1].

• Then B(v , k) ≈ {w ∈ Nt : |v − w | ≤ 2−k}.

⇒ Cov(Bt(v),Bt(w)) ≈ log2

( 1

d(v ,w)

)
.
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Log-correlated fields: (discrete) Gaussian free field

Let VN := [1,N]2 ∩Z2. The discrete Gaussian free field on VN (w/

0 boundary conditions) is the field {hVN
v : v ∈ Z2} with joint law

dhVN :=
1

Z
e−

1
8

∑
v∼w (h

VN
v −h

VN
w )2

∏
v∈VN

dhVN
v

∏
v 6∈VN

δ0(dhVN
v ) .

Properties:

• {hVN
v }v∈Z2 is a Gaussian vector.

• Cov(hVN
v , hVN

w ) = 2
π log N

max(‖v−w‖,1) + O(‖v − w‖−2).
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Log-correlated fields: random matrices

Another source of log-correlated fields comes from the

log-characteristic polynomials of various random matrix ensembles.

Eg. (CUE) Sample UN ∼ Haar measure on N × N unitary

matrices. Write its log-characteristic polynomial:

XN(θ) :=
N∑
j=1

log
∣∣∣1− e i(λj−θ)

∣∣∣
= Re

N∑
j=1

∑
k≥1
−e ik(λj−θ)

k
= Re

∑
k≥1
−

TrUk
N

k
e−ikθ

Then, using the result of Diaconis-Shahshahani:

Cov(XN(θ),XN(θ′)) � E
∑
k≥1

e−ik(θ−θ
′)

k2
Re
[
|TrUk

N |2
]

� Re
∑
k≥1

e−ik(θ−θ
′)

k
= −Re log(1− e i(θ−θ

′)) � log |θ − θ′| .
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Other examples of LCFs

Examples come from...

• Random matrices (log-characteristic polynomials of

beta-ensembles, Wigner, Ginibre,. . . )

• Interface models (∇φ/Ginzburg-Landau models)

• Stochastic processes (local time of 2D Brownian motion,

cover times of graphs)

• Even number theory (Riemann zeta function on the critical

line, restricted to intervals of length 1)

• ...

8



Universality: extrema of log-correlated fields (predictions)

The extreme values of log-correlated fields are expected to exhibit

universal behavior.

1. Maximum

Max ∼ Leading order−C log(Leading order)+Gumbel+random shift

Remarks:
• The C is larger than that of the iid case

• Random-shift is often called derivative martingale, related to

the total mass of a critical Gaussian multiplicative chaos

measure.

2. (Extremal point process) Let mt be the expected value of the

maximum of the log-correlated field {Xt(v)}v∈Nt .∑
v∈Nt

δXv (v)−mt
→ decorated Poisson point process+random shift

Finding a connection with BBM/BRW is crucial.
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The Question of the Day

Question of the day: Simulate a BBM, run until time t. “Trace

out” the outer edge of the picture formed by the BBM particles in

Nt (the “front” of the BBM process). What is its shape?
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The Question of the Day, take 2

• For all large times t, the particles in d ≥ 2 will “percolate” a

ball of some radius f (t) (Biggins ’78, Gärtner ’82)

• OTOH, exceptional particles will travel very far from the

origin, creating spikes away from this ball.

• Question OTD: What is the shape of the outer envelope of

the BBM around its furthermost particles (the “front”)?
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The front and extreme value theory of BBM

Some definitions.

• For a particle v ∈ Nt , write Rt(v) := ‖Bt(v)‖.
• Let R∗t := maxv∈Nt Rt(v) (the max norm at time t).

• “Furthermost particles” = the particles whose norms are

within O(1) of R∗t .

Stepping stones:

1. At what distance (from the origin) is the front located?

= Understand the maximum R∗t (’21)

2. How are the “furthermost particles” distributed? =

Understand the extremal point process (’21, ’24)

3. How does the front grow? Scaling limit? (’24)

So, the study of the front is tied to the “extremal landscape” of

BBM.
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Extremal landscape, dimension 1: Maximum

Fix d = 1. Define mt(1) :=
√

2t − 3
2
√
2

log t. Then

R∗t −mt(1)→ Gumbel + random shift in distribution.

• Convergence in distribution was proved by Bramson ’83 via

connection with F-KPP equation, a reaction-diffusion equation

• identification of the limiting law as a Gumbel + random shift

was proved by Lalley-Sellke ’87

Why Gumbel + random shift?

13
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The random shift

Figure 1: Left: initial particles veer to the left. Right: initial particles

veer far to the right.

In both pictures, we see how the initial behavior permanently shifts the

maximum. (Image by É. Brunet, taken from notes of J. Berestycki).

Theorem (Lalley-Sellke, ’87)

lim
L→∞

lim
t→∞

P
(
R∗t −mt(1) ≤ y

∣∣ FL

)
→ exp

(
− e−

√
2y+logZ∞)

)
a.s.

‘1
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Extremal landscape, dimension 1: Extremal point process

Consider the extremal point process

Et :=
∑
v∈Nt

δRt(v)−mt(1) .

This is the point process of all particles near the maximum.

• Limiting distribution identified in 2011 independently by

Aidekon-Berestycki-Brunet-Shi and Arguin-Bovier-Kistler as a

randomly-shifted, decorated Poisson point process

15
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Randomly-shifted, decorated Poisson point process

Q: Where does the decorated Poisson point process come from?

Using a (modified) first and second moment method, one can

show, for any K ∈ R:

lim
L,`→∞

lim
t→∞

P
(
∃v ,w ∈ Nt : Rt(v) > mt(1)− K ,

Rt(w) > mt(1)− K ,MRCA(v ,w) ∈ [L, t − `]
)

= 0 .

This means all particles contributing to Et are either very close

relatives (branched after time t − `, gives the decoration) or

extremely distant relatives (branched before time L, essentially

independent, gives the PPP).
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A new member of the universality class: multi-dimensional

BBM

Consider now d ≥ 2.

• We are interested in those Bt(v), v ∈ Nt , such that

Rt(v) := ‖Bt(v)‖ is close to R∗t := max
v∈Nt

‖Bt(v)‖

• Compared to one-dimensional BBM:
1. The norm process {‖Bt(v)‖}v∈Nt is a branching Bessel(d)

process— non-trivial technical issues

• no longer Gaussian, and there are a robust set of tools to

handle Gaussian log-correlated fields

• no longer shift-invariant (spatially inhomogeneous): in

particular, the random-shift story gets complicated

2. There’s a new spatial aspect— the angles in addition to the

norms of the particles.

Fairly large gap in time between the 1d and multi-d results.
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Extremal landscape, Rd : Maximum

Previous results on the maximum of multidimensional BBM

(d ≥ 2).

1. (Leading-order term, Biggins ’95): R∗t /
√

2t → 1 a.s.

2. (Sub-leading-order term and tightness, Mallein ’15):

mt(d) =
√

2t + d−4
2
√
2

log t, and (R∗t −mt(d))t≥0 is tight

Theorem (K.-Lubetzky-Zeitouni, Ann. Appl. Prob. ’23)

There exists a a.s.-positive random variable Z∞ such that

R∗t −mt(d)⇒ Gumbel− 1√
2

logZ∞ .
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Connection with the F-KPP Equation

Consider the F-KPP reaction-diffusion equation:∂tu = 1
2∆u + u(1− u) in Rd

u(0, x) = φ(x) for x ∈ Rd

• Connection with BBM comes from McKean*: for

φ ∈ L∞(Rd), we can express u(t, x) as a multiplicative

functional of BBM in Rd .

• Example: φ(x) = 1{‖x‖≤1}. Then for any x ∈ Rd , t ≥ 0,

u(t, x) = P(∃v ∈ Nt : Bt(v) ∈ B(x , 1)) .

• Gärtner ’81: for any x ∈ Rd such that

‖x‖ = mG
t (d) :=

√
2t − d+2

2
√
2

log t ,

we have u(t, x) = 1/2.
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Connection with the F-KPP Equation, cont’d

F-KPP Equation :=

∂tu = 1
2∆u + u(1− u) in Rd

u(0, x) = φ(x) for x ∈ Rd

• Example: φ(x) = 1{‖x‖≤1}. Then for any x ∈ Rd , t ≥ 0,

u(t, x) = P(∃v ∈ Nt : Bt(v) ∈ B(x , 1)) .

• Gärtner ’81: for any x ∈ Rd such that ‖x‖ = mG
t (d) explicit,

we have u(t, x) = 1/2.

• Says at time t, BBM particles “fill up” the ball of radius

� mG
t (d).

• Equivalently, the median of the maximum norm of BBM in

any fixed strip of width 1 is mG
t (d).

• For d = 1, this gives the median size of the global maximum.

Purely PDE approach by Hamel, Nolen, Roquejoffre, Ryzhik.

Question: PDE approach to the maximum of multi-d BBM?

20
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• Gärtner ’81: for any x ∈ Rd such that ‖x‖ = mG
t (d) explicit,

we have u(t, x) = 1/2.

• Says at time t, BBM particles “fill up” the ball of radius

� mG
t (d).

• Equivalently, the median of the maximum norm of BBM in

any fixed strip of width 1 is mG
t (d).

• For d = 1, this gives the median size of the global maximum.

Purely PDE approach by Hamel, Nolen, Roquejoffre, Ryzhik.

Question: PDE approach to the maximum of multi-d BBM?

20



Connection with the F-KPP Equation, cont’d

F-KPP Equation :=

∂tu = 1
2∆u + u(1− u) in Rd

u(0, x) = φ(x) for x ∈ Rd

• Example: φ(x) = 1{‖x‖≤1}. Then for any x ∈ Rd , t ≥ 0,

u(t, x) = P(∃v ∈ Nt : Bt(v) ∈ B(x , 1)) .
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Extremal landscape, Rd : Maximum, Proof Strategy

• Norm of Brownian motion in Rd is a d-dimensional Bessel

process R.

dRt =
d − 1

2Rt
dt + dWt

• Spatially inhomogeneous Markov process on R.

• We study the d-dim. branching Bessel process

{Rs(v)}s>0,v∈Ns .

• Girsanov transform gives Radon-Nikodym derivative with a

1d Brownian motion on an interval of time [0, t]:

dPR
∣∣
Ft

=

(
Wt

W0

) d−1
2

︸ ︷︷ ︸
start/endpoint
dependence

exp
(∫ t

0

cd
W 2

u

du
)
1{Wu>0, u∈[0,t]}︸ ︷︷ ︸

pathwise dependence

dPW
∣∣
Ft
,

where cd > 0 for d ≥ 3 and cd < 0 for d = 2.
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Trajectories of the extremal particles

• Let L, ` be parameters that we send to infinity after t (think:

constants wrt t).

22



Extremal landscape, Rd : Extremal point process

Consider the extremal point process.

Et :=
∑
v∈Nt

δ(Rt(v)−mt(d),θt(v))

In the limit of the 1D extremal point process, we saw that the early

history of the process was never forgotten: became a random shift

of all the points on the real line.

Key question: how does the early history of the process affect the

distribution of the angles at later times, if at all?
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Extremal landscape in Rd : the extremal point process

Let L be a parameter going to infinity after t →∞ (so, with

respect to t, L is a large but fixed constant).

Claim. If v ∈ Nt is such that Rt(v) > mt(d), then

‖θt(v)− θL(v)‖ = o(1) with high probability, where o(1)→ 0

after first t →∞ then L→∞.

In words, the angle of an extremal particle at time t does not

change after time L, where L = Ot(1).
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Proof of claim (angles of extremals freeze after O(1) time)

Claim. If v ∈ Nt is such that Rt(v) > mt(d), then

‖θt(v)− θL(v)‖ = o(1) with high probability, where o(1)→ 0

after first t →∞ then L→∞.

Proof Let z :=
√

2L− RL(v) �
√
L (we know this from the

“window” event)

+exponential tail bounds on the max. displacement of BBM in Rd .
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The random measure, D∞

• Upshot: the angles in the “early history” (time L) actually

determine the angles of the extremal process at time t.

How

to quantify this?

• Stasiński, J. Berestycki, and Mallein construct a random

measure D∞(θ)Leb(dθ) on the sphere Sd−1 that turns out to

contain the info of the angles in the “early history.”

• For fixed θ ∈ Sd−1, the projection of the BBM onto θ is a 1d

BBM {Bs(v) · θ}v∈Ns ,s≥0. Let D∞(θ) denote the random

shift corresponding to the max. of this 1d BBM.
• They show D∞(θ) converges simultaneously a.s. for

Lebesgue-a.e. θ ∈ Sd−1.
• D∞(θ) is only defined as a function Leb-a.e., but still makes

for a perfectly good density.

• (Aside) We later proved that the random shift Z∞ of the

d ≥ 2 BBM maximum is given by the total mass D∞(Sd−1).
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determine the angles of the extremal process at time t. How

to quantify this?

• Stasiński, J. Berestycki, and Mallein construct a random

measure D∞(θ)Leb(dθ) on the sphere Sd−1 that turns out to

contain the info of the angles in the “early history.”

• For fixed θ ∈ Sd−1, the projection of the BBM onto θ is a 1d
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Extremal landscape in Rd : the extremal point process

Recall the extremal point process Et :=
∑

v∈Nt
δ(Rt(v)−mt(d),θt(v))

Theorem (Berestycki-K.-L.-Mallein-Z., Ann. Prob ’24+)

• Let (χi , θi )i∈N ⊂ R+ × Sd−1 be the points of a

PPP
(
Cde

−
√
2xdx × D∞(θ)Leb(dθ)

)
,

for some constant Cd > 0.

• Let {D(i)}i∈N be a collection of iid point processes with the

same law as the decorations from the 1D BBM case.

Then (weakly in the topology of vague convergence)

Et → E∞ :=
∑
i∈N

∑
r∈D(i)

δ(χi+r ,θi ) .
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Extremal landscape in Rd : the angular decorations

Theorem from last slide: Recall Et :=
∑

v∈Nt
δ(Rt(v)−mt(d),θt(v)).

Then

Et → E∞ :=
∑
i∈N

∑
r∈D(i)

δ(χi+r ,θi ) .

Q: Why are there no angular decorations?

A: We measure angles from the origin, but the clusters have

diameter O(1) =⇒ in the limit, the different angles in a cluster

all get squashed.

28
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Recovering the angular decorations

• Measuring the angles from the origin caused us to lose

information of the “landscape” around each leader.

• What if we view the extremal point process from the maximal

particle u∗t instead:

Eclustert :=
∑
v∈Nt

δRθ∗t
(Bt(v)−Bt(u∗t ))

→ Ecluster∞ ?

(Here, Rθ∗t is the rotation sending θ∗t to e1)

• Heuristic: Only particles that branched after t − O(1)-time

contribute to the above. The transversal spread of these

particles is O(1), while the radial distance is mt(d) ∼
√

2t.

=⇒ transversal spread has no impact on the norm

=⇒ the transversal motion of each particle in the cluster

after time t − O(1) ≈ d − 1 dimensional BM’s, independent

after conditioning on the genealogical tree.
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Extremal BBM landscape: the angular decorations

Theorem (K., Zeitouni ’24, Description of the extremal

cluster)

Eclustert :=
∑
v∈Nt

δRθ∗t
(Bt(v)−Bt(u∗t ))

(d)−−→ Ecluster∞ ,

where Ecluster∞ is described below.
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v∈Nt

δRθ∗t
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(d)−−→ Ecluster∞ ,

where Ecluster∞ is described below.

• We generate Ecluster∞ as the superposition of various

d-dimensional BBM clouds.

• For simplicity, let’s focus on d = 2.
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Description of the extremal cluster Ecluster∞

Ecluster∞ can be generated by the following process:

1. (Backwards path of maximal particle) Define a particle ξ, the

“spine”, and its path

(Ss(ξ))s≥0 ≈
(
−
√

2s − Rs(ξ),Ys(ξ)
)
s≥0 ,

where R.(ξ) is Bessel(3) started from 0, and Y.(ξ) is an

independent standard 1D Brownian motion.

2. (Branching times) At random branching times

0 < τ1 < τ2 < . . . (≈ PPP(2dt)), the particle ξ produces a 2D

BBM, started from Sτi (ξ), run for time τi .

P(i) :=
∑

v∈N(i)
τi

δSτi (ξ)+(X
(i)
τi

(v),Y
(i)
τi

(v))
,

Y
(i)
s (v) is an indep. Brownian motion.
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Description of the extremal cluster Ecluster∞
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Extremal BBM landscape: the angular decorations

P(i) :=
∑

v∈N(i)
τi

δSτi (ξ)+(X
(i)
τi

(v),Y
(i)
τi

(v))
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Description of the extremal cluster Ecluster∞

4. Summing up these point processes gives a (slightly simplified)

description of the extremal cluster: Ecluster∞ ≈ δ(0,0) +
∑∞

i=1 P(i).
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4. Summing up these point processes gives a (slightly simplified)

description of the extremal cluster: Ecluster∞ ≈ δ(0,0) +
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The Front of BBM

Question of the day, revisited (dimension = 2).

• Recall Eclustert is the BBM point process rotated+shifted so

the max. particle u∗ at time t lies at 0 ∈ Rd .

• “Look back” from u∗: consider the highest particle with

x-coordinate in [−sL,−sL + 1], where s > 0 and L > 0 is the

scaling parameter.

• The front of the BBM (around u∗):

ht,L(s) := max
{
p
(2)
i : (p

(1)
i , p

(2)
i ) ∈ Eclustert , p

(1)
i ∈ [−sL,−sL+1]

}
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Pictures of the front

The front of the BBM (around u∗, d = 2):

ht,L(s) := max
{
p
(2)
i : (p

(1)
i , p

(2)
i ) ∈ Eclustert , p

(1)
i ∈ [−sL,−sL+1]

}
.
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The shape of the front

The front of the BBM (around u∗, d = 2):

ht,L(s) := max
{
p
(2)
i : (p

(1)
i , p

(2)
i ) ∈ Eclustert , p

(1)
i ∈ [−sL,−sL+1]

}
.

Theorem (K., Zeitouni ’24)

We have the following weak convergence of the front(
8−

1
4L−

3
2 ht,L(s)

)
s∈[0,∞)

⇒ (ρs)s∈[0,∞) ,

as first t →∞, then L→∞, where

ρs :=
(

max
σ>0

σs − σRσ
)1/2

and R. is a Bessel(3) process.

For any d ≥ 2, the front converges to the paraboloid formed by

rotating ρ. around the x-axis.
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The shape of the front

The front of the BBM (around u∗, d = 2):

ht,L(s) := max
{
p
(2)
i : (p

(1)
i , p

(2)
i ) ∈ Eclustert , p

(1)
i ∈ [−sL,−sL+1]

}
.

Theorem (K., Zeitouni ’24)

We have the following weak convergence of the front(
8−

1
4L−

3
2 ht,L(s)

)
s∈[0,∞)

⇒ (ρs)s∈[0,∞) ,

as first t →∞, then L→∞, where

ρs :=
(

max
σ>0

σs − σRσ
)1/2

and R. is a Bessel(3) process.

For any d ≥ 2, the front converges to the paraboloid formed by

rotating ρ. around the x-axis. 40



Heuristic argument for the 3/2 scaling exponent, d = 2

Let’s understand the L3/2 behavior of ht,L(s), say for s = 1, d = 2.

• Due to weak convergence of Eclustert to the explicit point

process Ecluster∞ as t →∞, it suffices to study the front of

Ecluster∞ :

hL(s) := max
{
p
(2)
i : pi ∈ Ecluster∞ , p

(1)
i ∈ [−sL,−sL + 1]

}
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Heuristic argument for the 3/2 scaling exponent, d = 2

• Want to understand the maximum height amongst all

particles of Ecluster∞ in the strip [−L,−L + 1)×∞.

• Recall: Ecluster∞ ≈ δ(0,0) + shifted BBM clouds.

• Consider the contribution of each BBM cloud separately:

hL(s) = max
i∈N

max
i th BBM cloud

{
vertical displacement in [−sL,−sL + 1]×∞

}

• There will be an exponential number of particles (in L) in this

strip → we’ll ignore polynomial terms.

• Also, to leading-order, the max. of log-correlated fields agrees

with the max. of iid fields → we’ll pretend the particle

trajectories are independent Brownian motions.

42



Heuristic argument for the 3/2 scaling exponent, d = 2

• Want to understand the maximum height amongst all

particles of Ecluster∞ in the strip [−L,−L + 1)×∞.

• Recall: Ecluster∞ ≈ δ(0,0) + shifted BBM clouds.

• Consider the contribution of each BBM cloud separately:

hL(s) = max
i∈N

max
i th BBM cloud

{
vertical displacement in [−sL,−sL + 1]×∞

}

• There will be an exponential number of particles (in L) in this

strip → we’ll ignore polynomial terms.

• Also, to leading-order, the max. of log-correlated fields agrees

with the max. of iid fields → we’ll pretend the particle

trajectories are independent Brownian motions.

42



Heuristic argument for the 3/2 scaling exponent, d = 2

• Want to understand the maximum height amongst all

particles of Ecluster∞ in the strip [−L,−L + 1)×∞.

• Recall: Ecluster∞ ≈ δ(0,0) + shifted BBM clouds.

• Consider the contribution of each BBM cloud separately:

hL(s) = max
i∈N

max
i th BBM cloud

{
vertical displacement in [−sL,−sL + 1]×∞

}

• There will be an exponential number of particles (in L) in this

strip → we’ll ignore polynomial terms.

• Also, to leading-order, the max. of log-correlated fields agrees

with the max. of iid fields → we’ll pretend the particle

trajectories are independent Brownian motions.

42



Heuristic argument for the 3/2 scaling exponent, d = 2

• Want to understand the maximum height amongst all

particles of Ecluster∞ in the strip [−L,−L + 1)×∞.

• Recall: Ecluster∞ ≈ δ(0,0) + shifted BBM clouds.

• Consider the contribution of each BBM cloud separately:

hL(s) = max
i∈N

max
i th BBM cloud

{
vertical displacement in [−sL,−sL + 1]×∞

}

• There will be an exponential number of particles (in L) in this

strip → we’ll ignore polynomial terms.

• Also, to leading-order, the max. of log-correlated fields agrees

with the max. of iid fields → we’ll pretend the particle

trajectories are independent Brownian motions.

42



Heuristic argument for the 3/2 scaling exponent, d = 2

Consider the BBM cloud born at time τ . It is born on the spine:

initial position is (−
√

2τ − Rτ (ξ),Yτ (ξ)), where R. is Bessel(3)

and Y. is BM.

Define ατ := τ−1/2Rτ (ξ) = O(1).

E[#particles w/ x-coord. in [−L,−L + 1]] ≈ poly(L)eτe−
(
√
2τ+ατ

√
τ−L)2

2τ

= poly(L) exp
(
− ατ

√
2τ + L

√
2 +

ατL√
τ
− L2

2τ

)
=: N .

We’re then interested in the max. Mτ of N iid ∼ N (0, τ).

Solve: eM2
τ/2τ = eN =⇒ M2

τ = 2
(
−ατ
√

2τ3/2+
√

2Lτ+ατLτ
1/2 − L2

2

)
Treating ατ as constant and optimizing over τ yields τ � L2, and

thus Mτ � τ3/2. Write τ = σL2:

M2
s ≈ 2

√
2L3
(
σ−σRσL2(ξ)

L

)
⇒ hL(1) ≈ 8

1
4L

3
2 max
σ≥0

(
σ−σRσL2(ξ)

L

)1/2
.
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Glimpse of the rigorous argument

hL(s) = max
i∈N

max
i th BBM cloud

{
vertical displacement in [−sL,−sL + 1]×∞

}

• Avoids any modified second moment method that has become

standard in the study of log-correlated fields.

• Proceeds by

1. Localizing the set of birth times of the BBM clouds which

contribute to L−3/2hL(s)

2. Understanding how much space is filled by each of these BBM

clouds

44



Glimpse of the rigorous argument

hL(s) = max
i∈N

max
i th BBM cloud

{
vertical displacement in [−sL,−sL + 1]×∞

}

• Avoids any modified second moment method that has become

standard in the study of log-correlated fields.

• Proceeds by

1. Localizing the set of birth times of the BBM clouds which

contribute to L−3/2hL(s)

2. Understanding how much space is filled by each of these BBM

clouds

44



Thank you!

45


