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One-slide Overview

• Consider the random Fourier series/random wave model with

i.i.d. Gaussian coefficients on [0, 1] (g
(i)
k ∼ N(0, 1) i.i.d.):

S∞,g (x) :=
∑∞

k=1
1√
k

(
g
(1)
k cos(2πkx) + g

(2)
k sin(2πkx)

)
• Limit of the CβE log-characterisic polynomial

• We’ll consider the model in general bdd. domains D ⊂ Rd . When

d = 2, our model is the GFF in D.

• Consider the associated Gaussian multiplicative chaos (GMC),

γ ∈ (0,
√

2):

µγ,g (dx) ∝ eγS∞,g (x)dx

Random fractal measure on [0, 1], universal object...

• Question: What happens when we replace the g
(i)
k with general

i.i.d. coefficients? What does the resulting multiplicative chaos

look like? Is it like a GMC?

• We’ll answer through the lens of absolute continuity.
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Outline

1. Background on log-correlated fields and Gaussian multiplicative

chaos

2. Multiplicative chaos from non-Gaussian log-correlated fields

3. Main theorem

4. Proof ideas with a view towards future work
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Log-correlated fields

Roughly speaking, a log-correlated field (LCF) with size parameter

N on a metric space (DN , d)

is a random function (field)

XN : DN → R such that Cov(XN(x),XN(y)) decays logarithmically

with d(x , y).

Examples.

• Random matrices (log-characteristic polynomials of

beta-ensembles, Wigner, Ginibre,. . . )

• Interface models (Gaussian free field, ∇φ/Ginzburg-Landau)

• Stochastic processes (branching Brownian motion/random walk,

local time of 2D Brownian motion, cover times of graphs)

• Even number theory (Riemann zeta function on the critical line,

restricted to intervals of length 1)

• ...
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Example in d = 1: random matrices

A big source of log-correlated fields comes from the

log-characteristic polynomials of various random matrix ensembles.

E.g. (CUE) Sample UN ∼ Haar measure on N × N unitary

matrices. Write its log-characteristic polynomial:

XN(θ) :=
N∑
j=1

log
∣∣∣1− e2πi(λj−θ)

∣∣∣
= Re

N∑
j=1

∑
k≥1
−e2πik(λj−θ)

k
= Re

∑
k≥1
−

TrUk
N

k
e−2πikθ

Then, using the result of Diaconis-Shahshahani:

Cov(XN(θ),XN(θ′)) � Re
∑
k≥1

e−2πik(θ−θ
′)

k2
E
[
|TrUk

N |2
]

� Re
∑
k≥1

e−2πik(θ−θ
′)

k
= −Re log(1− e2πi(θ−θ

′)) � − log |θ−θ′| .
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Example in d = 2: (discrete) Gaussian free field

Let VN := [1,N]2 ∩Z2. The discrete Gaussian free field on VN (w/

0 boundary conditions) is the field {hVN
v : v ∈ Z2} with joint law

dhVN :=
1

Z
e−

1
8

∑
v∼w (h

VN
v −h

VN
w )2

∏
v∈VN

dhVN
v

∏
v 6∈VN

δ0(dhVN
v ) .

Properties:

• {hVN
v }v∈Z2 is a Gaussian vector.

• Cov(hVN
v , hVN

w ) = 2
π log N

max(‖v−w‖,1) + O(‖v − w‖−2).

6
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Universality predictions for LCFs

Many LCFs are known to become asymptotically Gaussian as

N →∞: they converge in distribution, as a generalized function,

to a Gaussian log-correlated field.

Examples.

1. (d = 1) CUE. The log-characteristic poly. (Xn(θ))θ∈[0,1] of CUE

converges to the log-correlated random Fourier series

[Hughes-Keating-O’Connell ’01]( 1√
2

∞∑
k=1

g
(1)
k cos(2πkθ) + g

(2)
k sin(2πkθ)√

k

)
θ∈[0,1]

2. (d = 2) Ginibre. The log-char. poly (Xn(z))z∈D of a Ginibre

matrix (i.i.d. complex Gaussian entries) converges to

[Rider-Virag ’07]

XN(z)→ Gaussian free field in D .
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Universality predictions for LCFs

Asymptotically-Gaussian LCFs XN are expected to exhibit universal

behavior in their extreme values, related to a fractal random

measure called Gaussian multiplicative chaos (GMC).

1. The distribution of the “extreme level set” of XN

νN,β(dx) :=
1{x∈DN : XN(x)≥βmaxy∈DN

XN(y)}

P(x ∈ DN : XN(x) ≥ βmaxy∈DN
XN(y))

dx

should converge to GMC.

2. The measure obtained by exponentiating XN

µN,γ(dx) = eγXN(x)/E[eγXN(x)] dx

shoud converge to GMC.

8
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Examples of convergence to GMC

LCP := log-characteristic polynomial

• extreme level sets of BBM [Genz-Kistler-Schmidt ’18]

• extreme level sets of DGFF [Biskup-Louidor ’19]

• extreme level sets of CUE, Gaussian LCFs [Junnila-Lambert

Webb ’24]

• LCP of CUE: [Webb ’15] (L2-phase), [Nikula-Saksman-Webb

’20] (full subcritical)

• dynamics on LCP of CUE [Bourgade-Falconet ’22]

• spectral measure of CβE [Chhaibi-Najnudel ’19]

• LCP of CβE [Lambert-Najnudel ’24]

• LCP of GUE [Berestycki-Webb-Wong ’18]

• Eigenvalue counting function of GUE

[Claeys-Fahs-Lambert-Webb ’21]

• LCP of GOE/GSE [Kivamae ’24]

• ...
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• LCP of CβE [Lambert-Najnudel ’24]

• LCP of GUE [Berestycki-Webb-Wong ’18]

• Eigenvalue counting function of GUE

[Claeys-Fahs-Lambert-Webb ’21]

• LCP of GOE/GSE [Kivamae ’24]
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9



Examples of convergence to GMC

LCP := log-characteristic polynomial

• extreme level sets of BBM [Genz-Kistler-Schmidt ’18]

• extreme level sets of DGFF [Biskup-Louidor ’19]

• extreme level sets of CUE, Gaussian LCFs [Junnila-Lambert

Webb ’24]

• LCP of CUE: [Webb ’15] (L2-phase), [Nikula-Saksman-Webb

’20] (full subcritical)

• dynamics on LCP of CUE [Bourgade-Falconet ’22]

• spectral measure of CβE [Chhaibi-Najnudel ’19]

• LCP of CβE [Lambert-Najnudel ’24]

• LCP of GUE [Berestycki-Webb-Wong ’18]

• Eigenvalue counting function of GUE

[Claeys-Fahs-Lambert-Webb ’21]

• LCP of GOE/GSE [Kivamae ’24]

• ... 9



Gaussian Multiplicative Chaos (GMC)

• A Gaussian log-correlated field h on a domain D ⊂ Rd is the

generalized function formally satisfying:

E[h(x)] = 0 , Cov(h(x), h(y)) = log
1

|x − y |
+ f (x , y) ,

where f : D × D → R is a continuous function.

• h can be realized as a Gaussian random variable in the Sobolev

space Hs(Rd), for all s < 0.
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Gaussian Multiplicative Chaos (GMC)

• Fix γ > 0. Given (hε)ε>0 a smooth approximation to h,

we

define the GMCγ asso’d to h to be the random measure

µγ(dx) := lim
ε→0

µγ,ε(dx) , µγ,ε(dx) := eγhε(x)/E[eγhε(x)] dx

(in topology of weak convergence, Radon measures on D).

• Usually, the approximating sequence hε is obtained via a

sequence of mollifiers or a sequence of martingales.

• The limit is non-trivial for γ ∈ (0,
√

2d). Further, µγ(dx) does

not depend on the approximating sequence, so we can really

say “the GMC asso’d to h.” [Kahane ’85], [Robert-Vargas ’10],

[Shamov ’16], [Berestycki ’17]

• Original motivations come from quantum field thoery

[Høeg-Krohn ’71] and turbulance [Mandelbrodt ’85]. Further

applications (beyond what’s been mentioned) include 2D

Liouville quantum gravity, finance.
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Chaos and non-Gaussian log-correlated fields

• Some log-correlated fields are not Gaussian even in the limit.

• For such fields, the corresponding multiplicative chaos measure

is then not expected to be GMC.

Examples.

1. spectral measures built from general sequences of Verblunsky
coefficients

• [Lambert-Najnudel ’24] develop tools that can address such

general sequences. They raise the question of a.c. w.r.t. some

GMC

2. spectral measure of GβE
3. Riemann zeta function

• Non-Gaussianity comes from contribution of small primes.

• [Saksman-Webb ’20] showed, for a random model of zeta, the

corresponding multiplicative chaos is absolutely continuous w.r.t.

a coupled GMC, with bounded R-N derivative.
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Chaos and non-Gaussian log-correlated fields

Examples.

4. critical Stochastic Heat Flow (SHF) in two dimensions
• log-correlated process of random measures on R2, constructed by

[Caravenna-Sun-Zygouras ’23]

• Another paper [Caravenna-Sun-Zygouras ’23]: “The (one-time

marginal of) critical 2d SHF is not a GMC”

• They also raise question of absolute continuity w.r.t. some GMC

5. Brownian multiplicative chaos
• Multiplicative chaos measure coming from the field of local times

of 2D Brownian motion

• Closure of support is the trajectory of a 2D Brownian motion

• Originally constructed in L2-regime by

[Bass-Burdzy-Khoshnevisan ’94], in whole subcritical regime by

[Äıdékon-Hu-Shi ’20] and [Jego ’20]

• General characterization by [Jego ’23], critical case by [Jego ’21],

connection with Brownian loop soup by

[Äıdékon-Berestycki-Jego-Lupu ’23]

13
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Model for today: random wave/random Fourier series

• For d = 1, fix D = [0, 1]. Take a
(i)
k i.i.d., E[a

(1)
1 ] = 0,

Var[a
(1)
1 ] = 1, E[eλa

(1)
1 ] <∞ for all λ ∈ R. Define

Sn,a(x) :=
n∑

k=1

1√
k

(
a
(1)
k cos(2πkx) + a

(2)
k sin(2πkx)

)
• For d ≥ 2, fix D ⊂ Rd bounded domain. Let {en}n∈N be an

orthonormal basis of eigenfunctions of −∆ on D with Dirichlet

boundary conditions, in increasing order of the corresponding

eigenvalues λn. Define

Sn,a(x) :=
1

(2π)d

∑
λk≤n

akλ
− d

4
k ek(x) .

• A computation shows that these are log-correlated fields.

• Recall that when the a := g ’s are i.i.d. Gaussian and d = 1,

S∞,a(x) is the limiting field of CUE. When d = 2, S∞,g (x) is the

GFF in D.
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Model for today: random wave/random Fourier series in [0, 1]

Our model: We’ll take D = [0, 1] for simplicity.

• For a
(i)
k ∼ i.i.d., E[a

(1)
1 ] = 0, Var[a

(1)
1 ] = 1, E[eλa

(1)
1 ] <∞ for all

λ ∈ R,

Sn,a(x) :=
n∑

k=1

1√
k

(
a
(1)
k cos(2πkx) + a

(2)
k sin(2πkx)

)
• Chaos measure:

µn,γ,a(dx) :=
eγSn,a(x)

E[eγSn,a(x)]
dx .

• (Positive) Martingale structure:

E[µn,γ,a(A)
∣∣ Fn−1] =

∫
A
E
[ eγSn,a(x)

E[eγSn,a(x)]

∣∣ Fn−1

]
dx

=

∫
A

eγSn−1,a(x)

E[eγSn−1,a(x)]
dx = µn−1,γ,a(A) .

So, convergence as n→∞ of µn,γ,a is easy. Non-triviality of limit?

15
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Multiplicative Chaos of non-Gaussian Fourier series

Our model:

Sn,a(x) :=
∑n

k=1
1√
k

(
a
(1)
k cos(2πkx) + a

(2)
k sin(2πkx)

)
µn,γ,a(dx) := eγSn,a(x)/E[eγSn,a(x)] dx .

[Junnila, IMRN ’18] shows the subcritical chaos is non-trivial:

• For γ ∈ (0,
√

2), ∃µγ,a non-degenerate measure such that

lim
n→∞

µn,γ,a = µγ,a in probability.

(in topology of weak convergence, Radon measures on [0, 1])

• For γ ≥
√

2, the limiting measure is degenerate.
+Addresses more general class of non-Gaussian LCFs, also shows

existence of moments, “analyticity in γ.”

+Independence of µγ,a from approximating sequence is not known

Question: Does µγ,a resemble a GMCγ in any way?
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Main Result

Theorem (K.-Kriechbaum, ’24)

Take γ ∈ (1,
√

2). There exists a sequence of i.i.d. standard

Gaussians g := (g
(i)
k )k∈N,i∈{1,2} coupled to a := (a

(i)
k ) such that

µγ,g and µγ,a are mutually absolutely continuous, a.s.

• Here, µγ,g is the chaos asso’d to Sn,g (Gaussian Fourier series)

• It is a GMCγ , so the result says µγ,a can be coupled to a GMCγ
such that the two are mutually a.c., a.s.

• Result holds in general bdd domains in Rd , for γ ∈ (
√

d ,
√

2d).
• Note: the L2-regime is γ ∈ (0,

√
d)! Here, GMCγ(A) has finite

2nd moment, so things are usually easier...
• Problem: extend to all γ ∈ (0,

√
2d), or construct an example in

which behavior is actually different from GMC in L2-regime.

• Remark. Result seems to improve as more moments of a
(i)
k

match those of a Gaussian (e.g. E[(a
(i)
k )3] = 0)
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Overview of Proof, w/ view towards γ ∈ (1,
√
2) condition

Consider a dyadically-growing subsequence of the field:

Sn,a(x) :=
2n−1∑
k=1

a
(1)
k cos(2πkx) + . . . sin . . .√

k

• By CLT, the bracketed term is becoming more and more

Gaussian as m increases... for fixed x ∈ [0, 1].

• We’ll need to discretize [0, 1] into a finite set,

• then couple a well-chosen, sufficiently small subset of the

bracketed terms with Gaussians.
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Overview of Proof, w/ view towards γ ∈ (1,
√
2) condition

(Step 1) Discretization step: replace [0, 1] with a discrete set

• Sn,a(x) and Sn,a(x ′) have high-correlations when |x − x ′| � 2−n

(log-corr.)

• Continuity/chaining argument to show Sn,a(x) can be replaced
with a field that is piecewise constant on intervals of length
� 2−n.

• “replace” = the corresponding chaoses are a.c.

• Note: like replacing [0, 1] with a binary tree.

• Remark: requires regularity of the eigenfunctions.

19
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Overview of Proof, w/ view towards γ ∈ (1,
√
2) condition

(Step 2) Coupling step.

• Using the idea that (G)MCγ is supported on the set of γ-thick
points, we’ll couple the fields along these points only.

• Reduces the # of variables we need to couple

• Remark: this is why we require γ ∈ (1,
√

2).

#{γ-thick points} grows exponentially in γ as γ ↓ 0.

• Coupling tool: Yurinskii coupling
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Overview of Proof, w/ view towards γ ∈ (1,
√
2) condition

(Step 3) Radon-Nikodym derivative.

• After (Steps 1, 2), we’ll have reduced to two coupled models,

non-Gaussian S̃n,ã and Gaussian S̃n,g̃ , which can be thought of

as defined on the binary tree.

• The obvious candidate for the R-N derivative between their

associated chaoses is

R̃∞,γ(x) := “ lim
n→∞

R̃n,γ(x) ” , R̃n,γ(x) ∝ eγ(S̃n,ã(x)−S̃n,g̃ (x)) .

• Need to show integrability properties (e.g., uniform integrability)

and convergence a.e. w.r.t. the chaos measures (not Lebesgue)

• The most technical step, occupies bulk of paper.

• But robust: insensitive to choice of γ and domain D.
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Step 1 (discretization step)

Recall

Sn,a(x) =
n∑

m=1

( 2m−1∑
k=2m−1

a
(1)
k cos(2πkx) + . . . sin . . .√

k︸ ︷︷ ︸
≈ 1√

2m−1

∑
2m−1 terms (i.i.d., variance 1) ≈ N(0,1)

)

• Call ãm(x) :=
∑2m−1

k=2m−1

a
(1)
k cos(2πkx)+... sin...√

k
(the bracketed

term).

• Can compute Cov(ãm(x), ãm(x ′)) ≈ 1 for |x − x ′| � 2−m.
• So, the collection of “increments” (ãm(x))x∈[0,1] are ≈ constant

on intervals of size � 2−m.

• Implies Sn,a(x) should behave like a binary branching random

walk, so we should replace [0, 1] with a binary tree.

• Caveat: (ãm(x))x∈[0,1] are not independent across different x ’s
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• Caveat: (ãm(x))x∈[0,1] are not independent across different x ’s

22



Step 1 (discretization step)

Recall

Sn,a(x) =
n∑

m=1

( 2m−1∑
k=2m−1

a
(1)
k cos(2πkx) + . . . sin . . .√

k︸ ︷︷ ︸
≈ 1√

2m−1

∑
2m−1 terms (i.i.d., variance 1) ≈ N(0,1)

)

• Call ãm(x) :=
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Step 1 (discretization step): Piecewise constant increments

Recall Sn,a(x) =
∑n

m=1 ãm(x), and

ãm(x) :=
2m−1∑

k=2m−1

a
(1)
k cos(2πkx) + . . . sin . . .√

k
.

Claim: For each m ∈ N, ãm(x) is piecewise constant on intervals

of length � 2−m.

Heuristic proof: For x , x ′ ∈ [0, 1],

ãm(x)−ãm(x ′) =
2m−1∑

k=2m−1

a
(1)
k√
k

(
cos(2πkx)−cos(2πkx ′)

)
+ . . . sin . . .

� 1√
2m−1

2m−1∑
k=2m−1

a
(1)
k︸ ︷︷ ︸

By CLT, = O(1)

(
cos(2πkx)− cos(2πkx ′)

)
+ . . . sin . . .︸ ︷︷ ︸

By Lipschitz cont., =O(k·|x−x ′|)=O(2m|x−x ′|)
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ãm(x)−ãm(x ′) =
2m−1∑

k=2m−1

a
(1)
k√
k

(
cos(2πkx)−cos(2πkx ′)

)
+ . . . sin . . .

� 1√
2m−1

2m−1∑
k=2m−1

a
(1)
k︸ ︷︷ ︸

By CLT, = O(1)

(
cos(2πkx)− cos(2πkx ′)

)
+ . . . sin . . .︸ ︷︷ ︸

By Lipschitz cont., =O(k·|x−x ′|)=O(2m|x−x ′|)

23



Step 1 (Discretization step): Replacing with a binary tree

model

(In reality, we need slightly more leaves than a binary tree.)

1. For each m ∈ N, partition [0, 1] into 2m−1 intervals so that the

level m + 1 partition is a refinement of the level m partition.
2. Let Nm := the collection of midpoints of the level m intervals.

• Can view (Nm)m∈N as a binary tree, |Nm| = 2m−1

N1

N2
1/2

v ∈ N3
N3

1/2

1
4

3
4

ã1(v)

ã2(v)

ã3(v)

24
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ã2(v)
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Step 1 (Discretization step): Replacing with tree model

N1

N2
1/2

ã2(x)

v ∈ N3
N3

1/2

1
4

3
4

ã1(v)

ã2(v)

ã3(v)

3. Fix m ≤ n and v ∈ Nn. Define:

ãm(v) := ãm(w) , where w ∈ Nm is the ancestor of v ,

and the piecewise constant field

S̃n,a(x) := S̃n,a(v) =
n∑

m=1

ãm(v)

where x is in the interval corresponding to v ∈ Nn.

25
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ã2(x)

v ∈ N3
N3

1/2

1
4

3
4
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Step 1 (Discretization step): Replacing with tree model

The two fields:

Sn,a(x) =
n∑

m=1

ãm(x) and S̃n,a(x) := S̃n,a(v) =
n∑

m=1

ãm(v)

• A chaining argument + heuristic that ãm(x) ≈ ãm(v) yields:

sup
n∈N

sup
x∈[0,1]

∣∣∣Sn,a(x)− S̃n,a(x)
∣∣∣ <∞ a.s.

• Thus, the chaos µ̃γ,ã asso’d to S̃n,a is a.s. mutually absolutely

continuous w.r.t. the chaos µγ,a asso’d to Sn,a:

µ̃γ,ã(dx) := lim
n→∞

eγS̃n,a(x)
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Step 1 (Discretization step): Replacing with tree model

The two fields:

Sn,a(x) =
n∑

m=1
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Step 2 (Coupling step)

• We have reduced to a discrete tree model (S̃n,a(v))v∈Nn,n∈N.

• Recall the collection of increments at level m ∈ N:

ãm(v) :=
2m−1∑

k=2m−1

a
(1)
k cos(2πkv) + . . . sin . . .√

k
, v ∈ Nm .

• We wish to couple (ãm(v))v∈Nm with a Gaussian vector with

same covariance.

• The (ãm(v))v∈Nm are not indep. Also, |Nm| ≈ 2m.

N2
1/2

v1 v2 v3 v4
N3

1/2

1
4

3
4

ã3(v1) ã3(v2) ã3(v3) ã3(v4)
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• We wish to couple (ãm(v))v∈Nm with a Gaussian vector with

same covariance.
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Step 2 (Coupling step): Yurinskii coupling

Fix D ⊂ Nm, and write the corresponding level-m increments as a

sum of 2m−1 independent vectors in R|D|:(
ãm(v)

)
v∈D =

2m−1∑
k=2m−1

(a
(1)
k cos(2πkv) + a

(2)
k sin(2πkv)√

k

)
v∈D

Yurinskii coupling (Yurinskii ’78, Belloni et. al. ’19)

Fix M,D ∈ N. Let ξ1, . . . , ξM be independent, centered random

RD-vectors. Let ~a :=
∑M

k=1 ξk . Then ∃~g ∼ N(0,Cov(~a)) coupled

to ~a such that

P
(
‖~a− ~g‖p > δ

)
≤ 1

δ3

M∑
k=1

E
[
‖ξk‖22 · ‖ξk‖p

]
+stuff

for any p ∈ [1,∞].
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ãm(v)

)
v∈D =

2m−1∑
k=2m−1

(a
(1)
k cos(2πkv) + a

(2)
k sin(2πkv) . . .√

k

)
v∈D︸ ︷︷ ︸

ξk

Yurinskii coupling for us

(Fix M = 2m−1,D = |D|) Let ~a := (ãm(v))v∈D =
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Step 2 (Coupling step): Yurinskii coupling

Let’s estimate the error term:

P
(
‖~a− ~g‖p > δ

)
≤ 1

δ3

2m−1∑
k=2m−1

E
[
‖ξk‖22 · ‖ξk‖p

]
+stuff ,

where

ξk :=
(a

(1)
k cos(2πkv) + a

(2)
k sin(2πkv) . . .√

k

)
v∈D

.

• Note ξk only has 2 sources of randomness: a
(1)
k and a

(2)
k .

• Also, for the D we eventually choose, we can assume the cos and

sin are bounded away from 0 for a positive proportion of the v ’s.

‖ξk‖p ≈
max(|a(1)k |, |a

(2)
k |)

k1/2
‖(1, . . . , 1)‖p � 2−

m
2 max(|a(1)k |, |a

(2)
k |)|D|

1
p .

• Minimized when p =∞!
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Step 2 (Coupling step): Yurinskii coupling

Fix D ⊂ Nm, and write the corresponding level-m increments as a

sum of 2m−1 independent vectors in R|D|:(
ãm(v)

)
v∈D =

2m−1∑
k=2m−1

(a
(1)
k cos(2πkv) + a

(2)
k sin(2πkv) . . .√

k

)
v∈D︸ ︷︷ ︸

ξk

Yurinskii coupling for us

Fix M = 2m−1,D = |D|. Let ~a := (ãm(v))v∈D =
∑2m−1

k=2m−1 ξk .

Then ∃~g := (g̃m(v))v∈D ∼ N(0,Cov(~a)) coupled to ~a such that

P
(
‖~a− ~g‖p > δ

)
≤ 1

δ3

2m−1∑
k=2m−1

E
[
‖ξk‖22 · ‖ξk‖p

]
+stuff

for any p ∈ [1,∞].
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Step 2 (Coupling step): Yurinskii coupling

Fix D ⊂ Nm, and write the corresponding level-m increments as a

sum of 2m−1 independent vectors in R|D|:

(
ãm(v)

)
v∈D =

2m−1∑
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Fix M = 2m−1,D = |D|. Let ~a := (ãm(v))v∈D =
∑2m−1

k=2m−1 ξk .

Then ∃~g := (g̃m(v))v∈D ∼ N(0,Cov(~a)) coupled to ~a such that

P
(
‖~a− ~g‖∞ > m−2

)
≤ Cm62−n/2|D| .
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Step 2 (Coupling step): Yurinskii coupling

Fix D ⊂ Nm, and write the corresponding level-m increments as a

sum of 2m−1 independent vectors in R|D|:(
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Yurinskii coupling for us

Fix M = 2m−1,D = |D|. Let ~a := (ãm(v))v∈D =
∑2m−1

k=2m−1 ξk .

Then ∃~g := (g̃m(v))v∈D ∼ N(0,Cov(~a)) coupled to ~a such that

P
(
‖~a− ~g‖∞ > m−2

)
≤ Cm62−n/2|D| .

Q: What should D ⊂ Nm be?
31



Step 2 (Coupling step): Thick points

• Key fact: (G)MCγ is supported on the γ-thick points of the

field

T :=
{

x ∈ [0, 1] : lim inf
n→∞

S̃n,ã(x)

(log 2)n
= γ

}
, MCγ(T c) = 0 .

Gaussian heuristic: if G ∼ P is a Gaussian with variance

(log 2)n, typically G �
√

n. But under

dQ := eγG/E[eγG ] dP ,
G is still a Gaussian with mean E[G ] = γ(log 2)n (and same

variance as before) – Girsanov.

• =⇒ It should be sufficient to couple along T .

• But T is defined in terms of a limit, and our coupling scheme

goes level-by-level... want finite−n version of thick points.
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S̃n,ã(x)

(log 2)n
= γ

}
, MCγ(T c) = 0 .

Gaussian heuristic: if G ∼ P is a Gaussian with variance

(log 2)n, typically G �
√

n. But under

dQ := eγG/E[eγG ] dP ,
G is still a Gaussian with mean E[G ] = γ(log 2)n (and same

variance as before) – Girsanov.

• =⇒ It should be sufficient to couple along T .

• But T is defined in terms of a limit, and our coupling scheme

goes level-by-level... want finite−n version of thick points.

32



Step 2 (Coupling step): Thick points

• Recall S̃n,ã(x) =
∑n

m=1 ãm(x) is a bona-fide random walk-in-n.

• If x is thick, this means (S̃n,ã(x))n∈N looks like a Brownian

motion with drift γ log 2.

• Idea: a BM with drift γ log 2 stays above the line

`(t) = (γ − δ)(log 2)t eventually a.s., for any δ > 0.

Figure 1: Trajectory of the walk at a thick point. After some random

time τ(δ) <∞ a.s., it should stay above `(t).
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∑n
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Step 2 (Coupling step): Thick points

Our coupling strategy follows an inductive scheme:

• Suppose we have already coupled the first n levels:
• constructed Gaussians (g̃m(v))v∈Nm,m≤n with same covariance as

(ãm(v))v∈Nm,m≤n

• Define the (time n) thick points:

Tn,γ,ã :=
{

v ∈ Nn : S̃n,ã(v) ≥ log(2)(γ − δ)n
}

Tn,γ,g̃ :=
{

v ∈ Nn : S̃n,g̃ (v) ≥ log(2)(γ − δ)n
}

Tn,γ := Tn,γ,ã ∪ Tn,γ,g̃ .

• Define the random set of direct descendants of Tn,γ :

Nn+1(Tn,γ) := {v ∈ Nn+1 : ∃w ∈ Tn,γ such that v descends from w} .
• Our Yurinskii coupling takes place on (ãn+1(v))v∈Nn+1(Tn,γ).

Crucially, these values are still independent of levels 1 to n.
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Step 2 (Coupling step): Yurinskii + Thick points

Yurinskii: P
(
‖~a− ~g‖∞ > n−2

)
≤ Cn62−n/2|D|

• We take D := Nn+1(Tn,γ). Let’s count thick points.

|D| ≈ 2E|Tn,γ |

≈ 2 · 2n · P
(

S̃n,g̃ (v) ≥ (γ − δ)(log 2)n
)

≈ 2 · 2n−
(γ−δ)2

2
n

=⇒ P
(
‖~a− ~g‖∞ > n−2

)
≤ Cn62

n
2
(1−(γ−δ)2)

• Summable only if γ > 1 (hence the condition in the theorem).

• +Borel-Cantelli: thick descendants v ∈ Nn+1(Tn,γ) are coupled

to Gaussians g̃n+1(v) such that

‖g̃n+1(v)− ãn+1(v)‖L∞(Nn+1(Tn,γ)) ≤ n−2 , eventually a.s.

• Can extend to (g̃n+1(v))v∈Nn+1 so that its covariance matches

(ãn+1(v))v∈Nn+1 .
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(ãn+1(v))v∈Nn+1 .

35



Step 2 (Coupling step): Yurinskii + Thick points

Yurinskii: P
(
‖~a− ~g‖∞ > n−2

)
≤ Cn62−n/2|D|

• We take D := Nn+1(Tn,γ). Let’s count thick points.

|D| ≈ 2E|Tn,γ |

≈ 2 · 2n · P
(

S̃n,g̃ (v) ≥ (γ − δ)(log 2)n
)

≈ 2 · 2n−
(γ−δ)2

2
n

=⇒ P
(
‖~a− ~g‖∞ > n−2

)
≤ Cn62

n
2
(1−(γ−δ)2)

• Summable only if γ > 1 (hence the condition in the theorem).

• +Borel-Cantelli: thick descendants v ∈ Nn+1(Tn,γ) are coupled

to Gaussians g̃n+1(v) such that
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‖g̃n+1(v)− ãn+1(v)‖L∞(Nn+1(Tn,γ)) ≤ n−2 , eventually a.s.

• Can extend to (g̃n+1(v))v∈Nn+1 so that its covariance matches
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Step 3: Radon-Nikodym derivative between tree models

• In Step 1, we constructed the tree model S̃n,ã from the Fourier

series Sn,a.

• In Step 2, we constructed the Gaussian tree model S̃n,g̃ coupled

to S̃n,ã.

• Actually, Step 1 is “invertible”: we can construct a Gaussian

Fourier series Sn,g from the tree model such that the associated

chaoses are mutually a.c.

µγ,a µγ,g (chaoses from Fourier series)

µ̃γ,ã µ̃γ,g̃ (chaoses from tree models)
?
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Step 3: Radon-Nikodym derivative between tree models

Recall the chaos measure

µ̃γ,ã(A) := lim
n→∞

∫
A

eγS̃n,ã(x)

E[eγS̃n,ã(x)]
dx .

• The obvious candidate for the R-N derivative between µ̃γ,ã and

µ̃γ,g̃ (A) is

R∞,γ(x) := lim
n→∞

Rn,γ(x) , Rn,γ(x) := eγ(S̃n,ã(x)−S̃n,g̃ (x))
E[eγS̃n,g̃ (x)]

E[eγS̃n,ã(x)]

Need to show:

1. R∞,γ(x) exists for µ̃γ,ã and µ̃γ,g̃ -almost every x ∈ [0, 1].

2. limn→∞
∫
A Rn,γ(x)dµγ,ã = µ̃γ,g̃ (A)

3. (Rn,γ(x))n∈N is uniformly integrable w.r.t. µ̃γ,ã.

+ Same statements, switching ã and g̃ .

+ Items 2 and 3 form the most technical part of paper.
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+ Items 2 and 3 form the most technical part of paper.
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µ̃γ,g̃ (A) is

R∞,γ(x) := lim
n→∞

Rn,γ(x) , Rn,γ(x) := eγ(S̃n,ã(x)−S̃n,g̃ (x))
E[eγS̃n,g̃ (x)]

E[eγS̃n,ã(x)]
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+ Same statements, switching ã and g̃ .
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µ̃γ,g̃ (A) is

R∞,γ(x) := lim
n→∞

Rn,γ(x) , Rn,γ(x) := eγ(S̃n,ã(x)−S̃n,g̃ (x))
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1. R∞,γ(x) exists for µ̃γ,ã and µ̃γ,g̃ -almost every x ∈ [0, 1].

2. limn→∞
∫
A Rn,γ(x)dµγ,ã = µ̃γ,g̃ (A)
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E[eγS̃n,g̃ (x)]

E[eγS̃n,ã(x)]
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A Rn,γ(x)dµγ,ã = µ̃γ,g̃ (A)

3. (Rn,γ(x))n∈N is uniformly integrable w.r.t. µ̃γ,ã.
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Future Work

1. γ ≤ 1 (γ ≤
√

d)?

• Strangely, our result excludes the L2-regime (and γ = 1).

• The issue occurs only in the coupling step.

• Our strategy: couple direct descendants of all thick points in Nn

in L∞-norm using Yurinskii’s coupling.

• L∞-norm was optimal for Yurinskii’s coupling

• (Cattaneo-Masini-Underwood ’22): error in Yurinskii’s coupling

improves if E[(a
(1)
1 )3] = 0. Examining their proof seems to show

the error continues to improve if more moments match

Gaussian’s.
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Future Work

2. Critical chaos γ =
√

2d?

• Actually, the critical chaos hasn’t been constructed yet for the

random Fourier series/wave model.

• The difference will come only in Step 3, as the number of thick

points decreases as γ increases.

3. Properties of R∞,γ?

• supx∈[0,1] R∞,γ(x) is not a.s. finite.
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Summary

Theorem (K.-Kriechbaum, arXiv:2410.19979)

Take γ ∈ (1,
√

2). The log-correlated random Fourier series with

general coefficients can be coupled with a Gaussian Fourier series

such that the associated multiplicative chaos measures are

mutually absolutely continuous, a.s.

Future work.

1. γ ≤
√

d?

2. Critical chaos γ =
√

2d?

3. Properties of R∞,γ?

Tack!
40


