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e Limit of the CSE log-characterisic polynomial
e We'll consider the model in general bdd. domains D C RY. When
d = 2, our model is the GFF in D.
e Consider the associated Gaussian multiplicative chaos (GMC),
v € (0,v2):
Pry,g(dx) 758 dx
Random fractal measure on [0, 1], universal object...
e Question: What happens when we replace the glgi) with general
i.i.d. coefficients? What does the resulting multiplicative chaos
look like? Is it like a GMC?

e We'll answer through the lens of absolute continuity. 2



1. Background on log-correlated fields and Gaussian multiplicative
chaos

2. Multiplicative chaos from non-Gaussian log-correlated fields
3. Main theorem

4. Proof ideas with a view towards future work
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Roughly speaking, a log-correlated field (LCF) with size parameter
N on a metric space (Dy, d) is a random function (field)

Xn : Dy — R such that Cov(Xpy(x), Xn(y)) decays logarithmically
with d(x, y).

Examples.

e Random matrices (log-characteristic polynomials of
beta-ensembles, Wigner, Ginibre,...)

e Interface models (Gaussian free field, V¢ /Ginzburg-Landau)

e Stochastic processes (branching Brownian motion/random walk,
local time of 2D Brownian motion, cover times of graphs)

e Even number theory (Riemann zeta function on the critical line,

restricted to intervals of length 1)
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A big source of log-correlated fields comes from the
log-characteristic polynomials of various random matrix ensembles.

g. (CUE) Sample Uy ~ Haar measure on N x N unitary
matrices. Write its log-characteristic polynomial:

N
_ Z log ‘1 _ ezm(Aj—e)‘

-R Z Z e2mik(%-6) -R Z TrUR orike
= Re el Te
j=1 k>1 k>1
Then, using the result of Diaconis-Shahshahani:
/ o—2mik(0-0") ‘o
Cov(Xn(0), Xn(0')) < Re > TEHTrUN\ ]
k>1
o—2mik(6—0") ) ,
xRer:—Relog(l—e ) =< —log|0—6'|. ;

k>1
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Example in d = 2: (discrete) Gaussian free field

Let Vi := [1, N]> N Z2. The discrete Gaussian free field on Vyy (w/
0 boundary conditions) is the field {hY" : v € Z2} with joint law

1 Vy LV,
dhVW .= feféimw(hv”*hw”f [T dn» TT do(dn™).
veVy vZVy
Properties:
o {h\\//N}veZ2 is a Gaussian vector.

° Cov(h\Y"’,hv\CN) = %IOgH+WII-,1) + O(|lv — w|72).

max(
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1. (d = 1) CUE. The log-characteristic poly. (X,())ge[o,1) of CUE
converges to the log-correlated random Fourier series
[Hughes-Keating-O’Connell '01]

Vk

(i i g,gl) cos(2mkf) + g,52) sin(27rk9))
V2 k=1 0€[0,1]

2. (d =2) Ginibre. The log-char. poly (X,(z)).ep of a Ginibre
matrix (i.i.d. complex Gaussian entries) converges to
[Rider-Virag '07]
Xn(z) — Gaussian free field in D. 7
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Universality predictions for LCFs

Asymptotically-Gaussian LCFs X)y are expected to exhibit universal
behavior in their extreme values, related to a fractal random
measure called Gaussian multiplicative chaos (GMC).

1. The distribution of the “extreme level set” of Xy

LixeDn : Xn(x)=Bmax,epy Xn(y)}
x € Dy : Xn(x) > S maxyep, Xn(y))

vn,g(dx) = B dx

should converge to GMC.

2. The measure obtained by exponentiating Xy
fin A (dx) = &) JE[eXV(X)] dx

shoud converge to GMC.
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Examples of convergence to GMC

LCP := log-characteristic polynomial

e extreme level sets of BBM [Genz-Kistler-Schmidt '18]

e extreme level sets of DGFF [Biskup-Louidor "19]

e extreme level sets of CUE, Gaussian LCFs [Junnila-Lambert
Webb '24]

e LCP of CUE: [Webb '15] (L2-phase), [Nikula-Saksman-Webb
'20] (full subcritical)

e dynamics on LCP of CUE [Bourgade-Falconet '22]

e spectral measure of CSE [Chhaibi-Najnudel '19]

e LCP of CBE [Lambert-Najnudel '24]

e LCP of GUE [Berestycki-Webb-Wong '18]

e Eigenvalue counting function of GUE
[Claeys-Fahs-Lambert-Webb '21]

e LCP of GOE/GSE [Kivamae '24]
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Gaussian Multiplicative Chaos (GMC)

e A Gaussian log-correlated field h on a domain D C R is the
generalized function formally satisfying:

E[h(x)] =0, Cov(h(x), h(y)) = log

+f(x,y),
Ix =yl (ey)

where f : D x D — R is a continuous function.

e h can be realized as a Gaussian random variable in the Sobolev
space H*(R9), for all s < 0.

10
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Gaussian Multiplicative Chaos (GMC)

e Fix v > 0. Given (he)e>0 a smooth approximation to h, we
define the GMC, asso’d to h to be the random measure

sy (dx) = lim g, e(dx), iy e(dx) = e7he() /B[ ()] dx
E—

(in topology of weak convergence, Radon measures on D).

e Usually, the approximating sequence h, is obtained via a
sequence of mollifiers or a sequence of martingales.

e The limit is non-trivial for v € (0,v/2d). Further, 1, (dx) does
not depend on the approximating sequence, so we can really
say “the GMC asso'd to h." [Kahane '85], [Robert-Vargas '10],
[Shamov '16], [Berestycki '17]

e Original motivations come from quantum field thoery
[Hgeg-Krohn '71] and turbulance [Mandelbrodt '85]. Further
applications (beyond what's been mentioned) include 2D

Liouville quantum gravity, finance. 1
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Chaos and non-Gaussian log-correlated fields

e Some log-correlated fields are not Gaussian even in the limit.
e For such fields, the corresponding multiplicative chaos measure
is then not expected to be GMC.

Examples.

1. spectral measures built from general sequences of Verblunsky
coefficients
o [Lambert-Najnudel '24] develop tools that can address such
general sequences. They raise the question of a.c. w.r.t. some
GMC

2. spectral measure of GSE
3. Riemann zeta function
e Non-Gaussianity comes from contribution of small primes.
e [Saksman-Webb '20] showed, for a random model of zeta, the
corresponding multiplicative chaos is absolutely continuous w.r.t.
a coupled GMC, with bounded R-N derivative. 12



Chaos and non-Gaussian log-correlated fields

Examples.

4. critical Stochastic Heat Flow (SHF) in two dimensions
e log-correlated process of random measures on R?, constructed by
[Caravenna-Sun-Zygouras '23]
e Another paper [Caravenna-Sun-Zygouras '23]: “The (one-time
marginal of) critical 2d SHF is not a GMC"
e They also raise question of absolute continuity w.r.t. some GMC
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Chaos and non-Gaussian log-correlated fields

Examples.

4. critical Stochastic Heat Flow (SHF) in two dimensions
e log-correlated process of random measures on R?, constructed by
[Caravenna-Sun-Zygouras '23]
e Another paper [Caravenna-Sun-Zygouras '23]: “The (one-time
marginal of) critical 2d SHF is not a GMC"
e They also raise question of absolute continuity w.r.t. some GMC
5. Brownian multiplicative chaos
e Multiplicative chaos measure coming from the field of local times
of 2D Brownian motion
e Closure of support is the trajectory of a 2D Brownian motion
e Originally constructed in L2-regime by
[Bass-Burdzy-Khoshnevisan '94], in whole subcritical regime by
[Aidékon-Hu-Shi '20] and [Jego '20]
e General characterization by [Jego '23], critical case by [Jego '21],
connection with Brownian loop soup by

[Aidékon-Berestycki-Jego-Lupu '23] 13
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1 _d
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Ae<n
e A computation shows that these are log-correlated fields.

e Recall that when the a := g's are i.i.d. Gaussian and d =1,
Soo,a(x) is the limiting field of CUE. When d = 2, S, g(x) is the
GFF in D. 1



Model for today: random wave/random Fourier series in [0, 1]

15



Model for today: random wave/random Fourier series in [0, 1]

Our model: We'll take D = [0, 1] for simplicity.

15



Model for today: random wave/random Fourier series in [0, 1]

Our model: We'll take D = [0, 1] for simplicity.

e For afj) ~ i.i.d., E[agl)] = (0, Var[agl)] =1, ]E[eAagl)] < oo for all
AER,

Z (ak cos(2mkx) + aE( ) sm(27rkx))
k=

15



Model for today: random wave/random Fourier series in [0, 1]

Our model: We'll take D = [0, 1] for simplicity.

e For afj) ~ i.i.d., E[agl)] = (0, Var[agl)] =1, ]E[eAagl)] < oo for all
AER,

Z (ak cos(2mkx) + aE( ) sm(27rkx))
k=

e Chaos measure: e7Sn.a(x)
dx) == —————
Mnma( E[e»ys,, 2 x)]

15



Model for today: random wave/random Fourier series in [0, 1]

Our model: We'll take D = [0, 1] for simplicity.

e For afj) ~ i.i.d., E[agl)] = (0, Var[agl)] =1, ]E[e)‘agl)] < oo for all
AER,

Z (ak cos(2mkx) + aE( ) sm(27rkx))
k=

e Chaos measure: e7Sn.a(x)
dx) == —————
Mnma( E[e»ys,, 2 x)]

e (Positive) Martingale structure:

e'YSn,a(X)
Elttny,a(A) | Fn1] = /AE[W } anl} dx

e’YSnfLa(X)
= | Ery = HraslA)

15



Model for today: random wave/random Fourier series in [0, 1]

Our model: We'll take D = [0, 1] for simplicity.

e For afj) ~ i.i.d., E[agl)] = (0, Var[agl)] =1, ]E[e)‘agl)] < oo for all
AER,

Z (ak cos(2mkx) + aE( ) sm(27rkx))
k=

e Chaos measure: e7Sn.a(x)
dx) == —————
Mnma( E[e»ys,, 2 x)]

e (Positive) Martingale structure:

e'YSn,a(X)
Elttny,a(A) | Fn1] = /AE[W } anl} dx

e’YSnfLa(X)
= | Ery = HraslA)

. T - i1l5
So, convergence as n — 0o of fup 5 is easy. Non-triviality of limit?
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Our model:
S dld) =0 ﬁ (ag(l) cos(2mkx) + af) sin(27rkx))
fin,a(dx) = €79ma() /E[e75ma(¥)] dx .

[Junnila, IMRN 18] shows the subcritical chaos is non-trivial:
e For v € (0,v2), J41y,2 non-degenerate measure such that
lim ftn~,a = fy,a In probability.
n—o0

(in topology of weak convergence, Radon measures on [0, 1])
e For v > /2, the limiting measure is degenerate.

+Addresses more general class of non-Gaussian LCFs, also shows

existence of moments, “analyticity in ~."

+Independence of 1 , from approximating sequence is not known

Question: Does i 5 resemble a GMC, in any way? 16



Main Result

Theorem (K.-Kriechbaum, '24)

Take v € (1,V/2). There exists a sequence of i.i.d. standard
Gaussians g := (glgl))keN7,'€{1,2} coupled to a :== (ag(')) such that
p~,g and p, 5 are mutually absolutely continuous, a.s.

e Here, ji, 4 is the chaos asso'd to S, , (Gaussian Fourier series)
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Main Result

Theorem (K.-Kriechbaum, '24)

Take v € (1,V/2). There exists a sequence of i.i.d. standard
Gaussians g := (glgl))keN,ie{lg} coupled to a :== (ag(')) such that
p~,g and p, 5 are mutually absolutely continuous, a.s.

e Here, ji, 4 is the chaos asso'd to S, , (Gaussian Fourier series)
e ltisa GMC,, so the result says jiy , can be coupled to a GMC,
such that the two are mutually a.c., a.s.
e Result holds in general bdd domains in R9, for v € (v/d,v/2d).
o Note: the [ regime is v € (0,v/d)! Here, GMC,(A) has finite
2nd moment, so things are usually easier...
e Problem: extend to all y € (0,v/2d), or construct an example in
which behavior is actually different from GMC in [2-regime.
e Remark. Result seems to improve as more moments of al)

: k
match those of a Gaussian (e.g. E[(al’)3] = 0) 17
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Overview of Proof, w/ view towards v € (1,1/2) condition

Consider a dyadically-growing subsequence of the field:
27-1 (1)

a, ' cos(2mkx) +...sin...
Sna(x) =) Zk
= vk
S < 2mZ:1 af(l) cos(2mkx) + ...sin.. )
m=1 * k=2m-1 \/E
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~
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e By CLT, the bracketed term is becoming more and more
Gaussian as m increases... for fixed x € [0, 1].
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Overview of Proof, w/ view towards v € (1,1/2) condition

Consider a dyadically-growing subsequence of the field:

271 2 cos(2mkx) +...sin. ..

Sna(x) = Z a, ’ cos -

e By CLT, the bracketed term is becoming more and more
Gaussian as m increases... for fixed x € [0, 1].

e We'll need to discretize [0, 1] into a finite set,

e then couple a well-chosen, sufficiently small subset of the

bracketed terms with Gaussians.
18
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(Step 1) Discretization step: replace [0, 1] with a discrete set

e Sna(x) and S a(x") have high-correlations when |x — x/| < 27"
(log-corr.)
e Continuity/chaining argument to show S, ,(x) can be replaced
with a field that is piecewise constant on intervals of length
< 27"
e ‘replace” = the corresponding chaoses are a.c.
e Note: like replacing [0, 1] with a binary tree.
e Remark: requires regularity of the eigenfunctions.
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(Step 2) Coupling step.

e Using the idea that (G)MC, is supported on the set of ~-thick
points, we'll couple the fields along these points only.

e Reduces the # of variables we need to couple
e Remark: this is why we require v € (1,v/2).
#{~-thick points} grows exponentially in v as v | 0.

e Coupling tool: Yurinskii coupling

20
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(Step 3) Radon-Nikodym derivative.

o After (Steps 1, 2), we'll have reduced to two coupled models,
non-Gaussian §,,7g and Gaussian §,,7§, which can be thought of
as defined on the binary tree.

e The obvious candidate for the R-N derivative between their
associated chaoses is

Roory(x) = “ lim Roq(x)",  Rpny(x) ox @¥Gnal)=502()

n—oo

e Need to show integrability properties (e.g., uniform integrability)
and convergence a.e. w.r.t. the chaos measures (not Lebesgue)
e The most technical step, occupies bulk of paper.

e But robust: insensitive to choice of v and domain D.

21



Step 1 (discretization step)

22



Step 1 (discretization step)

Recall

Snax) = nl ( ) - )

k=2m—1

~_1 ~
N\/W 222’77*1 terms ~ N(0,1)

22



Step 1 (discretization step)

Recall
n 2m_1
S =3 (% )
m=1 k=2m—1 \/E
zﬁ 222’77*1 terms ~ N(0,1)
m_ O ..sin...
o Call 3(x) =2 b, % C°S(27:§;)+ *0* (the bracketed
term).

22



Step 1 (discretization step)

Recall
n 2m_1
S =3 (% )
m=1 k=2m—1 \/E
zﬁ 222’77*1 terms ~ N(0,1)
m_ O ..sin...
o Call 3(x) =2 b, % C°S(27:§;)+ *0* (the bracketed
term).

e Can compute Cov(am(x),am(x’)) = 1 for [x — x'| < 27™.

22



Step 1 (discretization step)

Recall
n 2m_1
S =3 (% )
m=1 k=2m—1 \/E
zﬁ 222’77*1 terms ~ N(0,1)
m_ O ..sin...
o Call 3(x) =2 b, % C°S(27:§;)+ *0* (the bracketed
term).

e Can compute Cov(am(x),am(x’)) = 1 for [x — x'| < 27™.
e So, the collection of “increments” (4m(x))xe[o,1] are &~ constant
on intervals of size < 27

22



Step 1 (discretization step)

Recall
n 2m_1
S =3 (% )
m=1 k=2m—1 \/E

zﬁ 222’77*1 terms ~ N(0,1)
m_ O ..sin...

o Call 3(x) =2 b, % C°S(27:%)+ *0* (the bracketed

term).

e Can compute Cov(am(x),am(x’)) = 1 for [x — x'| < 27™.
e So, the collection of “increments” (4m(x))xe[o,1] are &~ constant
on intervals of size < 27

o Implies S, ,(x) should behave like a binary branching random
walk, so we should replace [0, 1] with a binary tree.
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Step 1 (discretization step)

Recall

Spal) = Y ( ) - )

e Call

k=2m—1

~_1 ~
N\/W 222’77*1 terms ~ N(0,1)

~ L 2m—1 af(l) cos(2mkx) +...sin...
am(x) =D k_om1 N

(the bracketed

term).

e Can

compute Cov(am(x),am(x")) = 1 for [x — x'| < 27™.

So, the collection of “increments” (dm(x))xe[0,1] are = constant
on intervals of size < 27

Implies S, 2(x) should behave like a binary branching random
walk, so we should replace [0, 1] with a binary tree.

Caveat: (dm(x))xe[o,1) are not independent across different x's

22



Step 1 (discretization step): Piecewise constant increments

23



Step 1 (discretization step): Piecewise constant increments

Recall Spa(x) = > 0 _1 am(x), and

2"-1 (1) .
_ a, ' cos(2mkx) +...sin...
an(x) = D VK

k=2m—1
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Step 1 (discretization step): Piecewise constant increments

Recall Spa(x) = > 0 _1 am(x), and

- zi_:l 35(1) cos(2mkx) +...sin...

= Tk

k=2m-1

Claim: For each m € N, a,,(x) is piecewise constant on intervals
of length < 277,

Heuristic proof: For x, x" € [0,1],

m_1 (1)
am(x)—am(x’) = Z aL<cos(27r/<x)—cos(27rkx’))Jr ...sin...
ks VK
2m_1

1 (1) / :
= ——— Z a, (cos(27rkx) — cos(2mkx )>+ ...sin...
2m ' k=2m—1 g
By Lipschitz cont., =O(k:|x—x’|)=0(27|x—x’])

By CLT, = 0(1)
23
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(In reality, we need slightly more leaves than a binary tree.)

1. For each m € N, partition [0, 1] into 2™~ intervals so that the
level m + 1 partition is a refinement of the level m partition.
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Step 1 (Discretization step): Replacing with a binary tree

model

(In reality, we need slightly more leaves than a binary tree.)

1. For each m € N, partition [0, 1] into 2™~ intervals so that the
level m + 1 partition is a refinement of the level m partition.

2. Let NV, := the collection of midpoints of the level m intervals.
e Can view (Nm)men as a binary tree, |N,| = 2m~1
ai(v)
; = | M
a(v)

| 1 J N

[ 1/2 | 2
as(v)

v e N 1/2 Mo o



Step 1 (Discretization step): Replacing with tree model

veNM 1/2
3. Fix m < nand v €N,. Define:

am(v) .= am(w), where w € N}, is the ancestor of v,
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Step 1 (Discretization step): Replacing with tree model

L o I | No

veNs 1/2 N3

3. Fix m < nand v €N,. Define:
am(v) .= am(w), where w € N}, is the ancestor of v,

and the piecewise constant field

n

Sna(x) = Spa(v) = ) 3m(v)

m=1

where x is in the interval corresponding to v € N,,.

25)
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The two fields:

S0 = am(x) and Spa(x):=5,.(v) = am(v)
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Step 1 (Discretization step): Replacing with tree model

The two fields:
Spa(x) =Y am(x) and Spa(x):=S,.(v) = am(v)
m=1 m=1

e A chaining argument + heuristic that ap,(x) ~ am(v) yields:

sup sup |Spa(x) — Sn’a(x)’ <00 as.

neN x€[0,1]
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Step 1 (Discretization step): Replacing with tree model

The two fields:

m=1 m=1

e A chaining argument + heuristic that ap,(x) ~ am(v) yields:

sup sup |Spa(x) — Sn’a(x)) <00 as.

neN x€[0,1]

e Thus, the chaos i, 5 asso'd to Sna is a.s. mutually absolutely
continuous w.r.t. the chaos i~ , asso'd to S, ,:

e'an,a(X)

firy 5(dx) == lim ——=——d
'u”Y» ( X) nl—>nC10 ]E[e'YSn,a(X)] X

 lim eX(Sna-5natxy | ELE7 0] o

= . dx
o E[er5r(] E[e15C]
S——
uniformly bounded, a.s. Lon,~y.a—>fhry.a 26
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Step 2 (Coupling step)

e We have reduced to a discrete tree model (S, 2(V))ven,,nen-

e Recall the collection of increments at level m € N:
om_ :
Zl a&l) cos(2mkv) +...sin. ..

iz , vEN,.

am(v) =
k=2m—1

e We wish to couple (am(v))ven;,, with a Gaussian vector with
same covariance.
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Step 2 (Coupling step)

e We have reduced to a discrete tree model (S, 2(V))ven,,nen-

e Recall the collection of increments at level m € N:
2m-1 (1)

~ a, ’ cos(2mkv) +...sin...
am(v) = Z < , VEN,.
k=2m-1 vk

e We wish to couple (am(v))venr, with a Gaussian vector with
same covariance.
e The (am(v))ven,, are not indep. Also, |Np| =~ 2™.

N3 o7




Step 2 (Coupling step): Yurinskii coupling
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Step 2 (Coupling step): Yurinskii coupling

Fix D C N, and write the corresponding level-m increments as a

sum of 2™~1 independent vectors in RIP!:
(3m(V) 2”21 <a§(1) cos(2mkv) + a&z) sin(27rkv)>
am(v =
veD R Vk veD
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Step 2 (Coupling step): Yurinskii coupling

Fix D C N, and write the corresponding level-m increments as a
sum of 2™ ! independent vectors in RIP!:

(3m(V) B 2”21 <a5<1) cos(27rkv)—|—a§(2) sin(27rkv)>
m veD o \/; veD

Yurinskii coupling (Yurinskii ‘78, Belloni et. al. '19)

Fix M, D € N. Let &1, ...,&pn be independent, centered random
RP-vectors. Let &:= >, &. Then 3g ~ N(0, Cov(3)) coupled
to a such that

M
- - 1
P(15=2llp > 6) < =5 D E[I&l3 - ] +stuff
k=1

for any p € [1, ).
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Step 2 (Coupling step): Yurinskii coupling

Fix D C N, and write the corresponding level-m increments as a

sum of 2™ ! independent vectors in RIP!:
(3m(V) 2mZ:1 (3&1) cos(2mk )+a§<2) sin(2mk ))
am(v =
veD o \/; €D
&k

Yurinskii coupling for us
(Fix M =2m=1 D = |D|) Let &:= (Gm(v))vep = X2 g0 1 &k.
Then 3g := (gm(v))vep ~ N(0, Cov(a)) coupled to a such that

m

P(Ia-lo>0) < Z E[lel3 - €l +stutr

for any p € [1, o¢].
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Step 2 (Coupling step): Yurinskii coupling

Let's estimate the error term:

P(I-21p> ) < 55 3 E[I&lB - eell] +stuf,

k=2m—1
where

&k =

(35(1) cos(2mkv) + af( ) sin(2mkv) .. )
ﬁ veD
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where
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ﬁ veD
(1)

e Note &, only has 2 sources of randomness: a;~ and 3(2).

e Also, for the D we eventually choose, we can assume the cos and
sin are bounded away from 0 for a positive proportion of the v's.

max(’ail)lv\af)’) _m 1) .2 1
€xllp ~ 172 (1, .., Dlp <272 max(|a, [, |a;”[)[D]»
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Step 2 (Coupling step): Yurinskii coupling

Fix D C N, and write the corresponding level-m increments as a

sum of 2™ ! independent vectors in RIP!:
(3m(V) 2mZ:1 (3&1) cos(2mk )+a§<2) sin(2mk ))
am(v =
veD o \/; €D
&k

Yurinskii coupling for us
Fix M =271 D = |D|. Let &:= (3m(v))vep = > p gm1 k-
Then 3g := (gm(v))vep ~ N(0, Cov(a)) coupled to & such that
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for any p € [1, o¢].
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Fix D C N, and write the corresponding level-m increments as a
sum of 2™ ! independent vectors in RIP!:

m_1 (1) @) .
- B a, ' cos(2wkv) + a,” sin(2mkv) ...
(am(v))ve’D - E ( ) D

vk
Sk

k=2m—1

Yurinskii coupling for us

. _ = il
Fix M =2m"1 D = |D|. Let 3:= (@m(V))veD = Y. 1_om-1
Then 38 := (gm(v))vep ~ N(0, Cov(a)) coupled to & such that

P<||5—§||oo > m—2) < Cm®2-"/2|D|.
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Step 2 (Coupling step): Yurinskii coupling

Fix D C N, and write the corresponding level-m increments as a

sum of 2™ ! independent vectors in RIP!:
(3m(V) 2mZ:1 (35(1) cos(2mk )+a§<2) sin(2mk ))
am(v =
veD o \/; €D
&k

Yurinskii coupling for us
Fix M =271 D = |D|. Let &:= (3m(v))vep = Y togm 1 Ek-

Then 3g := (gm(v))vep ~ N(0, Cov(a)) coupled to & such that

P(|}7— &llow > m™2) < Cm®27"2|D).

Q: What should D C N,, be?
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Step 2 (Coupling step): Thick points

e Key fact: (G)MC, is supported on the 7-thick points of the
field

T = {X €1[0,1] : I|m |nf gog(z);) = 'y} , MC(T°)=0

32



Step 2 (Coupling step): Thick points

e Key fact: (G)MC, is supported on the 7-thick points of the
field

T = {X €1[0,1] : I|m Lr;f (5 g(2);) 'y} , MC(T°)=0

Gaussian heuristic: if G ~ P is a Gaussian with variance
(log2)n, typically G < /n.

32



Step 2 (Coupling step): Thick points

e Key fact: (G)MC, is supported on the 7-thick points of the
field

T = {X €1[0,1] : I|m Lr;f (5 g(2);) 'y} , MC(T°)=0

Gaussian heuristic: if G ~ P is a Gaussian with variance
(log2)n, typically G =< /n. But under

dQ := ¢ /E[e7€¢] dP,
G is still a Gaussian with mean E[G] = y(log2)n (and same
variance as before) — Girsanov.

32



Step 2 (Coupling step): Thick points

e Key fact: (G)MC, is supported on the 7-thick points of the
field

T = {X €1[0,1] : I|m Lr;f (5 g(2);) 'y} , MC(T°)=0

Gaussian heuristic: if G ~ P is a Gaussian with variance
(log2)n, typically G =< /n. But under

dQ := ¢ /E[e7€¢] dP,
G is still a Gaussian with mean E[G] = y(log2)n (and same
variance as before) — Girsanov.

e — It should be sufficient to couple along 7.

32



Step 2 (Coupling step): Thick points

e Key fact: (G)MC, is supported on the 7-thick points of the
field

T = {X €1[0,1] : I|m Lr;f (5 g(2);) 'y} , MC(T°)=0

Gaussian heuristic: if G ~ P is a Gaussian with variance
(log2)n, typically G =< /n. But under
dQ := ¢ /E[e7€¢] dP,
G is still a Gaussian with mean E[G] = y(log2)n (and same
variance as before) — Girsanov.
e — It should be sufficient to couple along 7.
e But 7 is defined in terms of a limit, and our coupling scheme

goes level-by-level... want finite—n version of thick points.
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Step 2 (Coupling step): Thick points

e Recall §,,75(x) = " _13m(x) is a bona-fide random walk-in-n.
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Step 2 (Coupling step): Thick points

e Recall §,,75(x) = " _13m(x) is a bona-fide random walk-in-n.

e If x is thick, this means (g,,g(x)),,eN looks like a Brownian
motion with drift v log 2.

e ldea: a BM with drift vlog 2 stays above the line

U(t) = (v — 0)(log2)t eventually a.s., for any 6 > 0.

2§l 2 )0

Figure 1: Trajectory of the walk at a thick point. After some random
time 7(0) < oo a.s., it should stay above (t).
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Step 2 (Coupling step): Thick points

Our coupling strategy follows an inductive scheme:

e Suppose we have already coupled the first n levels:
o constructed Gaussians (gm(Vv))venr, m<n With same covariance as

(am(v))ven,,m<n
e Define the (time n) thick points:

T = {v €N, : Sp3(v) > log(2)(y — 5)n}
= {v eN,: §n7§(v) > log(2)(y — 5)n}

)

Tny =Tz Tnqg-

e Define the random set of direct descendants of 7, -:

Not1(Tnry) :={v € Npt1 : 3w € Ty 5 such that v descends from w} .
e Our Yurinskii coupling takes place on (an+1(V))ven,,i(7m-)-
Crucially, these values are still independent of levels 1 to n. 34



Step 2 (Coupling step): Yurinskii + Thick points

Yurinskii: B (|7~ £l > n2) < C02-"/2|D)|
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|D| ~ 2E|Tn,4|
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= P(Hc'?— &l > n‘2) < Crb23(1-0—97)
e Summable only if v > 1 (hence the condition in the theorem).

e +Borel-Cantelli: thick descendants v € A/, 1(7, ) are coupled
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Step 2 (Coupling step): Yurinskii + Thick points

Yurinskii: B (|7~ £l > n2) < C02-"/2|D)|

e We take D := Nn+1(77,¢,). Let's count thick points.

|D| ~ 2E|Tn,4|
~2.2m. P(g,,g(v) > (7 — 6)(log 2)n)
~0. 2n—(‘ 2'\)2 n

2

— IP’<H5— Elloo > n—2) < Cnf230-0—97)

e Summable only if v > 1 (hence the condition in the theorem).
e +Borel-Cantelli: thick descendants v € A/, 1(7, ) are coupled
to Gaussians g,+1(v) such that

||§,,+1(v) — §”+1(V)“LOO(N;1+1(777,7)) < n_2, eventually &Sk

e Can extend to (gn+1(v)),cn, ., so that its covariance matches

(@n+1(v))vensi- %
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Step 3: Radon-Nikodym derivative between tree models

e In Step 1, we constructed the tree model §n75 from the Fourier
series Sy .

e In Step 2, we constructed the Gaussian tree model g,,g coupled
to gn,E-

e Actually, Step 1 is “invertible”: we can construct a Gaussian
Fourier series S, ; from the tree model such that the associated

chaoses are mutually a.c.

ey, a [i~.g (chaoses from Fourier series)

! !

. ? .
Py g $------% [y (chaoses from tree models)
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Step 3: Radon-Nikodym derivative between tree models

Recall the chaos measure

. A | e’ygn,g(x) d
N’Y,a( ) = ”LmOO/AE[e’an,g(X)] X .
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Recall the chaos measure

. A | e’ygn,g(x) d
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e The obvious candidate for the R-N derivative between /i, 5 and
/j'y,E(A) is
= = E[e75n(x)
Rsory(x) := lim Rosy(x), Rnn(x) = e/ Snal)=Saz() Elera]
n—o00 E[e’ysn,E(X)]
Need to show:

1. Ry (x) exists for fi, 5 and fi, z-almost every x € [0, 1].
2. limpso0 [ Ry (x)dpy 5 = iy z(A)

3. (Rny(x))nen is uniformly integrable w.r.t. /i, 3.
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Step 3: Radon-Nikodym derivative between tree models

Recall the chaos measure

. A | e’ygn,g(x) d
N’Y,a( ) = nL}mOO/AE[e'an,i(X)] X .

e The obvious candidate for the R-N derivative between /i, 5 and
/j'y,E(A) is
Roon(x) = lim Ron(x)s  Run(x) i e1Gnate)-Sp500) ELTr2]
n—00 E[e’YSn,E(X)]
Need to show:
1. Ry (x) exists for fi, 5 and fi, z-almost every x € [0, 1].

3. (Rny(x))nen is uniformly integrable w.r.t. /i, 3.

+ Same statements, switching a and g.
+ Items 2 and 3 form the most technical part of paper. 37
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L y<1(y<Vd)?

e Strangely, our result excludes the L?-regime (and v = 1).

e The issue occurs only in the coupling step.

e Our strategy: couple direct descendants of all thick points in N,
in L>°-norm using Yurinskii's coupling.

e [°°-norm was optimal for Yurinskii's coupling

e (Cattaneo-Masini-Underwood '22): error in Yurinskii's coupling

improves if E[(agl))3] = 0. Examining their proof seems to show

the error continues to improve if more moments match
Gaussian's.
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2. Critical chaos v = v2d7?

e Actually, the critical chaos hasn't been constructed yet for the
random Fourier series/wave model.

e The difference will come only in Step 3, as the number of thick
points decreases as -y increases.

3. Properties of R ?

® Sup,co,1] Roo,y(X) is not a.s. finite.

39



Theorem (K.-Kriechbaum, arXiv:2410.19979)

Take v € (1,V/2). The log-correlated random Fourier series with
general coefficients can be coupled with a Gaussian Fourier series
such that the associated multiplicative chaos measures are

mutually absolutely continuous, a.s.

Future work.

1. y<Vd?
2. Critical chaos v = v2d?
3. Properties of Ry 47

Tack!
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