Absolute continuity of non-Gaussian and Gaussian multiplicative chaos measures

Yujin H. Kim (Courant Institute, NYU) Institut Mittag-Leffler, Dec. 2024

Based on joint work with Xaver Kriechbaum.

• Consider the random Fourier series/random wave model with i.i.d. Gaussian coefficients on [0, 1] ($g_k^{(i)} \sim N(0, 1)$ i.i.d.):

• Consider the random Fourier series/random wave model with i.i.d. Gaussian coefficients on [0, 1] $(g_k^{(i)} \sim N(0, 1) \text{ i.i.d.})$:

$$S_{\infty,g}(x) := \sum_{k=1}^{\infty} \frac{1}{\sqrt{k}} \left(g_k^{(1)} \cos(2\pi kx) + g_k^{(2)} \sin(2\pi kx) \right)$$

• Consider the random Fourier series/random wave model with i.i.d. Gaussian coefficients on [0, 1] $(g_k^{(i)} \sim N(0, 1) \text{ i.i.d.})$:

$$S_{\infty,g}(x) := \sum_{k=1}^{\infty} \frac{1}{\sqrt{k}} \left(g_k^{(1)} \cos(2\pi kx) + g_k^{(2)} \sin(2\pi kx) \right)$$

• Limit of the C β E log-characterisic polynomial

• Consider the random Fourier series/random wave model with i.i.d. Gaussian coefficients on [0, 1] ($g_k^{(i)} \sim N(0, 1)$ i.i.d.):

$$S_{\infty,g}(x) := \sum_{k=1}^{\infty} \frac{1}{\sqrt{k}} \left(g_k^{(1)} \cos(2\pi kx) + g_k^{(2)} \sin(2\pi kx) \right)$$

- Limit of the C β E log-characterisic polynomial
- We'll consider the model in general bdd. domains D ⊂ ℝ^d. When d = 2, our model is the GFF in D.

• Consider the random Fourier series/random wave model with i.i.d. Gaussian coefficients on [0, 1] $(g_k^{(i)} \sim N(0, 1) \text{ i.i.d.})$:

$$S_{\infty,g}(x) := \sum_{k=1}^{\infty} \frac{1}{\sqrt{k}} \left(g_k^{(1)} \cos(2\pi kx) + g_k^{(2)} \sin(2\pi kx) \right)$$

- Limit of the C β E log-characterisic polynomial
- We'll consider the model in general bdd. domains D ⊂ ℝ^d. When d = 2, our model is the GFF in D.
- Consider the associated Gaussian multiplicative chaos (GMC), $\gamma \in (0,\sqrt{2})$:

$$\mu_{\gamma, g}(\mathsf{d} x) \propto e^{\gamma \mathcal{S}_{\infty, g}(x)} \mathsf{d} x$$

Random fractal measure on [0,1], universal object...

• Consider the random Fourier series/random wave model with i.i.d. Gaussian coefficients on [0, 1] $(g_k^{(i)} \sim N(0, 1) \text{ i.i.d.})$:

$$S_{\infty,g}(x) := \sum_{k=1}^{\infty} \frac{1}{\sqrt{k}} \left(g_k^{(1)} \cos(2\pi kx) + g_k^{(2)} \sin(2\pi kx) \right)$$

- Limit of the C β E log-characterisic polynomial
- We'll consider the model in general bdd. domains D ⊂ ℝ^d. When d = 2, our model is the GFF in D.
- Consider the associated Gaussian multiplicative chaos (GMC), $\gamma \in (0,\sqrt{2})$:

$$\mu_{\gamma,g}(\mathsf{d} x) \propto e^{\gamma \mathcal{S}_{\infty,g}(x)} \mathsf{d} x$$

Random fractal measure on [0,1], universal object...

• Question:

• Consider the random Fourier series/random wave model with i.i.d. Gaussian coefficients on [0, 1] ($g_k^{(i)} \sim N(0, 1)$ i.i.d.):

$$S_{\infty,g}(x) := \sum_{k=1}^{\infty} \frac{1}{\sqrt{k}} \left(g_k^{(1)} \cos(2\pi kx) + g_k^{(2)} \sin(2\pi kx) \right)$$

- Limit of the C β E log-characterisic polynomial
- We'll consider the model in general bdd. domains D ⊂ ℝ^d. When d = 2, our model is the GFF in D.
- Consider the associated Gaussian multiplicative chaos (GMC), $\gamma \in (0,\sqrt{2})$:

$$\mu_{\gamma, g}(\mathsf{d} x) \propto e^{\gamma \mathcal{S}_{\infty, g}(x)} \mathsf{d} x$$

Random fractal measure on [0,1], universal object...

• **Question:** What happens when we replace the $g_k^{(i)}$ with general i.i.d. coefficients?

• Consider the random Fourier series/random wave model with i.i.d. Gaussian coefficients on [0, 1] $(g_k^{(i)} \sim N(0, 1) \text{ i.i.d.})$:

$$S_{\infty,g}(x) := \sum_{k=1}^{\infty} \frac{1}{\sqrt{k}} \left(g_k^{(1)} \cos(2\pi kx) + g_k^{(2)} \sin(2\pi kx) \right)$$

- Limit of the $C\beta E$ log-characterisic polynomial
- We'll consider the model in general bdd. domains D ⊂ ℝ^d. When d = 2, our model is the GFF in D.
- Consider the associated Gaussian multiplicative chaos (GMC), $\gamma \in (0,\sqrt{2})$:

$$\mu_{\gamma, {f g}}({ extsf{d}} x) \propto e^{\gamma \mathcal{S}_{\infty, {f g}}(x)} { extsf{d}} x$$

Random fractal measure on [0,1], universal object...

• **Question:** What happens when we replace the $g_k^{(i)}$ with general i.i.d. coefficients? What does the resulting multiplicative chaos look like?

• Consider the random Fourier series/random wave model with i.i.d. Gaussian coefficients on [0, 1] ($g_k^{(i)} \sim N(0, 1)$ i.i.d.):

$$S_{\infty,g}(x) := \sum_{k=1}^{\infty} \frac{1}{\sqrt{k}} \left(g_k^{(1)} \cos(2\pi kx) + g_k^{(2)} \sin(2\pi kx) \right)$$

- Limit of the C β E log-characterisic polynomial
- We'll consider the model in general bdd. domains D ⊂ ℝ^d. When d = 2, our model is the GFF in D.
- Consider the associated Gaussian multiplicative chaos (GMC), $\gamma \in (0, \sqrt{2})$:

$$\mu_{\gamma, g}(\mathsf{d} x) \propto e^{\gamma \mathcal{S}_{\infty, g}(x)} \mathsf{d} x$$

Random fractal measure on [0,1], universal object...

• **Question:** What happens when we replace the $g_k^{(i)}$ with general i.i.d. coefficients? What does the resulting multiplicative chaos look like? Is it like a GMC?

• Consider the random Fourier series/random wave model with i.i.d. Gaussian coefficients on [0, 1] $(g_k^{(i)} \sim N(0, 1) \text{ i.i.d.})$:

$$S_{\infty,g}(x) := \sum_{k=1}^{\infty} \frac{1}{\sqrt{k}} \left(g_k^{(1)} \cos(2\pi kx) + g_k^{(2)} \sin(2\pi kx) \right)$$

- Limit of the $C\beta E$ log-characterisic polynomial
- We'll consider the model in general bdd. domains D ⊂ ℝ^d. When d = 2, our model is the GFF in D.
- Consider the associated Gaussian multiplicative chaos (GMC), $\gamma \in (0,\sqrt{2})$:

$$\mu_{\gamma, g}(\mathsf{d} x) \propto e^{\gamma \mathcal{S}_{\infty, g}(x)} \mathsf{d} x$$

Random fractal measure on [0,1], universal object...

- **Question:** What happens when we replace the $g_k^{(i)}$ with general i.i.d. coefficients? What does the resulting multiplicative chaos look like? Is it like a GMC?
- We'll answer through the lens of absolute continuity.

- 1. Background on log-correlated fields and Gaussian multiplicative chaos
- 2. Multiplicative chaos from non-Gaussian log-correlated fields
- 3. Main theorem
- 4. Proof ideas with a view towards future work

Log-correlated fields

Roughly speaking, a log-correlated field (LCF) with size parameter N on a metric space (D_N, d)

Log-correlated fields

Roughly speaking, a log-correlated field (LCF) with size parameter N on a metric space (D_N, d) is a random function (field) $X_N : D_N \to \mathbb{R}$ such that $Cov(X_N(x), X_N(y))$ decays logarithmically with d(x, y).

Log-correlated fields

Roughly speaking, a log-correlated field (LCF) with size parameter N on a metric space (D_N, d) is a random function (field) $X_N : D_N \to \mathbb{R}$ such that $Cov(X_N(x), X_N(y))$ decays logarithmically with d(x, y).

Examples.

- Random matrices (log-characteristic polynomials of beta-ensembles, Wigner, Ginibre,...)
- Interface models (Gaussian free field, $\nabla \phi/\text{Ginzburg-Landau}$)
- Stochastic processes (branching Brownian motion/random walk, local time of 2D Brownian motion, cover times of graphs)
- Even number theory (Riemann zeta function on the critical line, restricted to intervals of length 1)

A big source of log-correlated fields comes from the log-characteristic polynomials of various random matrix ensembles.

A big source of log-correlated fields comes from the log-characteristic polynomials of various random matrix ensembles.

E.g. (CUE) Sample $U_N \sim$ Haar measure on $N \times N$ unitary matrices.

A big source of log-correlated fields comes from the log-characteristic polynomials of various random matrix ensembles.

E.g. (CUE) Sample $U_N \sim$ Haar measure on $N \times N$ unitary matrices. Write its log-characteristic polynomial:

$$X_{N}(\theta) := \sum_{j=1}^{N} \log \left| 1 - e^{2\pi i (\lambda_{j} - \theta)} \right|$$
$$= \operatorname{Re} \sum_{j=1}^{N} \sum_{k \ge 1} -\frac{e^{2\pi i k (\lambda_{j} - \theta)}}{k} = \operatorname{Re} \sum_{k \ge 1} -\frac{\operatorname{Tr} U_{N}^{k}}{k} e^{-2\pi i k \theta}$$

A big source of log-correlated fields comes from the log-characteristic polynomials of various random matrix ensembles.

E.g. (CUE) Sample $U_N \sim$ Haar measure on $N \times N$ unitary matrices. Write its log-characteristic polynomial:

$$\begin{split} X_N(\theta) &:= \sum_{j=1}^N \log \left| 1 - e^{2\pi i (\lambda_j - \theta)} \right| \\ &= \operatorname{Re} \sum_{j=1}^N \sum_{k \ge 1} - \frac{e^{2\pi i k (\lambda_j - \theta)}}{k} = \operatorname{Re} \sum_{k \ge 1} - \frac{\operatorname{Tr} U_N^k}{k} e^{-2\pi i k \theta} \end{split}$$

Then, using the result of Diaconis-Shahshahani:

A big source of log-correlated fields comes from the log-characteristic polynomials of various random matrix ensembles.

E.g. (CUE) Sample $U_N \sim$ Haar measure on $N \times N$ unitary matrices. Write its log-characteristic polynomial:

$$X_{N}(\theta) := \sum_{j=1}^{N} \log \left| 1 - e^{2\pi i (\lambda_{j} - \theta)} \right|$$
$$= \operatorname{Re} \sum_{j=1}^{N} \sum_{k \ge 1} -\frac{e^{2\pi i k (\lambda_{j} - \theta)}}{k} = \operatorname{Re} \sum_{k \ge 1} -\frac{\operatorname{Tr} U_{N}^{k}}{k} e^{-2\pi i k \theta}$$

Then, using the result of Diaconis-Shahshahani:

$$\operatorname{Cov}(X_N(\theta), X_N(\theta')) \asymp \operatorname{Re} \sum_{k \ge 1} \frac{e^{-2\pi i k(\theta - \theta')}}{k^2} \mathbb{E} \left[|\operatorname{Tr} U_N^k|^2 \right]$$

$$\asymp \operatorname{\mathsf{Re}} \sum_{k \ge 1} \frac{e^{-2\pi i k (\theta - \theta')}}{k} = -\operatorname{\mathsf{Re}} \log(1 - e^{2\pi i (\theta - \theta')}) \asymp -\log|\theta - \theta'|.$$

5

Let $V_N := [1, N]^2 \cap \mathbb{Z}^2$. The discrete Gaussian free field on V_N (w/ 0 boundary conditions) is the field $\{h_v^{V_N} : v \in \mathbb{Z}^2\}$ with joint law

$$dh^{V_{N}} := \frac{1}{Z} e^{-\frac{1}{8} \sum_{v \sim w} (h_{v}^{V_{N}} - h_{w}^{V_{N}})^{2}} \prod_{v \in V_{N}} dh_{v}^{V_{N}} \prod_{v \notin V_{N}} \delta_{0}(dh_{v}^{V_{N}}).$$

Let $V_N := [1, N]^2 \cap \mathbb{Z}^2$. The discrete Gaussian free field on V_N (w/ 0 boundary conditions) is the field $\{h_v^{V_N} : v \in \mathbb{Z}^2\}$ with joint law

$$dh^{V_{N}} := \frac{1}{Z} e^{-\frac{1}{8} \sum_{v \sim w} (h_{v}^{V_{N}} - h_{w}^{V_{N}})^{2}} \prod_{v \in V_{N}} dh_{v}^{V_{N}} \prod_{v \notin V_{N}} \delta_{0}(dh_{v}^{V_{N}}).$$

Properties:

- $\{h_v^{V_N}\}_{v\in\mathbb{Z}^2}$ is a Gaussian vector.
- $\operatorname{Cov}(h_v^{V_N}, h_w^{V_N}) = \frac{2}{\pi} \log \frac{N}{\max(\|v w\|, 1)} + O(\|v w\|^{-2}).$

Many LCFs are known to become asymptotically Gaussian as $N \rightarrow \infty$: they converge in distribution, as a generalized function, to a Gaussian log-correlated field.

Many LCFs are known to become asymptotically Gaussian as $N \rightarrow \infty$: they converge in distribution, as a generalized function, to a Gaussian log-correlated field.

Examples.

(d = 1) CUE. The log-characteristic poly. (X_n(θ))_{θ∈[0,1]} of CUE converges to the log-correlated random Fourier series [Hughes-Keating-O'Connell '01]

$$\Big(\frac{1}{\sqrt{2}}\sum_{k=1}^{\infty}\frac{g_k^{(1)}\cos(2\pi k\theta)+g_k^{(2)}\sin(2\pi k\theta)}{\sqrt{k}}\Big)_{\theta\in[0,1]}$$

Many LCFs are known to become asymptotically Gaussian as $N \rightarrow \infty$: they converge in distribution, as a generalized function, to a Gaussian log-correlated field.

Examples.

(d = 1) CUE. The log-characteristic poly. (X_n(θ))_{θ∈[0,1]} of CUE converges to the log-correlated random Fourier series [Hughes-Keating-O'Connell '01]

$$\Big(\frac{1}{\sqrt{2}}\sum_{k=1}^{\infty}\frac{g_k^{(1)}\cos(2\pi k\theta)+g_k^{(2)}\sin(2\pi k\theta)}{\sqrt{k}}\Big)_{\theta\in[0,1]}$$

(d = 2) Ginibre. The log-char. poly (X_n(z))_{z∈D} of a Ginibre matrix (i.i.d. complex Gaussian entries) converges to [Rider-Virag '07]

 $X_N(z)
ightarrow$ Gaussian free field in $\mathbb D$.

Asymptotically-Gaussian LCFs X_N are expected to exhibit universal behavior in their extreme values, related to a fractal random measure called **Gaussian multiplicative chaos (GMC)**.

Asymptotically-Gaussian LCFs X_N are expected to exhibit universal behavior in their extreme values, related to a fractal random measure called **Gaussian multiplicative chaos (GMC)**.

1. The distribution of the "extreme level set" of X_N

$$\nu_{N,\beta}(\mathsf{d} x) := \frac{\mathbb{1}_{\{x \in D_N : X_N(x) \ge \beta \max_{y \in D_N} X_N(y)\}}}{\mathbb{P}(x \in D_N : X_N(x) \ge \beta \max_{y \in D_N} X_N(y))} \, \mathsf{d} x$$

should converge to GMC.

Asymptotically-Gaussian LCFs X_N are expected to exhibit universal behavior in their extreme values, related to a fractal random measure called **Gaussian multiplicative chaos (GMC)**.

1. The distribution of the "extreme level set" of X_N

$$\nu_{N,\beta}(\mathsf{d} x) := \frac{\mathbb{1}_{\{x \in D_N : X_N(x) \ge \beta \max_{y \in D_N} X_N(y)\}}}{\mathbb{P}(x \in D_N : X_N(x) \ge \beta \max_{y \in D_N} X_N(y))} \mathsf{d} x$$

should converge to GMC.

2. The measure obtained by exponentiating X_N

$$\mu_{N,\gamma}(\mathsf{d} x) = e^{\gamma X_N(x)} / \mathbb{E}[e^{\gamma X_N(x)}] \, \mathsf{d} x$$

shoud converge to GMC.

Examples of convergence to GMC

Examples of convergence to GMC

 $\mathsf{LCP} := \mathsf{log-characteristic} \ \mathsf{polynomial}$

Examples of convergence to GMC

 $\mathsf{LCP} := \mathsf{log-characteristic} \ \mathsf{polynomial}$

- extreme level sets of BBM [Genz-Kistler-Schmidt '18]
- extreme level sets of DGFF [Biskup-Louidor '19]
- extreme level sets of CUE, Gaussian LCFs [Junnila-Lambert Webb '24]
- LCP of **CUE**: [Webb '15] (*L*²-phase), [Nikula-Saksman-Webb '20] (full subcritical)
- dynamics on LCP of **CUE** [Bourgade-Falconet '22]
- spectral measure of $C\beta E$ [Chhaibi-Najnudel '19]
- LCP of CBE [Lambert-Najnudel '24]
- LCP of GUE [Berestycki-Webb-Wong '18]
- Eigenvalue counting function of **GUE** [Claeys-Fahs-Lambert-Webb '21]
- LCP of GOE/GSE [Kivamae '24]

Gaussian Multiplicative Chaos (GMC)

 A Gaussian log-correlated field h on a domain D ⊂ ℝ^d is the generalized function formally satisfying:

$$\mathbb{E}[h(x)] = 0$$
, $Cov(h(x), h(y)) = \log \frac{1}{|x-y|} + f(x, y)$,

where $f: D \times D \rightarrow \mathbb{R}$ is a continuous function.

 A Gaussian log-correlated field h on a domain D ⊂ ℝ^d is the generalized function formally satisfying:

$$\mathbb{E}[h(x)] = 0$$
, $Cov(h(x), h(y)) = \log \frac{1}{|x-y|} + f(x, y)$,

where $f : D \times D \rightarrow \mathbb{R}$ is a continuous function.

h can be realized as a Gaussian random variable in the Sobolev space H^s(ℝ^d), for all s < 0.
• Fix $\gamma > 0$. Given $(h_{\epsilon})_{\epsilon > 0}$ a smooth approximation to h,

 Fix γ > 0. Given (h_ε)_{ε>0} a smooth approximation to h, we define the GMC_γ asso'd to h to be the random measure
 μ_γ(dx) := lim_{ε→0} μ_{γ,ε}(dx), μ_{γ,ε}(dx) := e^{γh_ε(x)}/𝔼[e^{γh_ε(x)}] dx

- Fix γ > 0. Given (h_ε)_{ε>0} a smooth approximation to h, we define the GMC_γ asso'd to h to be the random measure
 μ_γ(dx) := lim_{ε→0} μ_{γ,ε}(dx), μ_{γ,ε}(dx) := e^{γh_ε(x)}/𝔼[e^{γh_ε(x)}] dx
 (in topology of weak convergence, Radon measures on D).
- Usually, the approximating sequence h_ε is obtained via a sequence of mollifiers or a sequence of martingales.

• Fix $\gamma > 0$. Given $(h_{\epsilon})_{\epsilon>0}$ a smooth approximation to h, we define **the GMC**_{γ} asso'd to h to be the random measure $\mu_{\gamma}(dx) := \lim_{\epsilon \to 0} \mu_{\gamma,\epsilon}(dx), \qquad \mu_{\gamma,\epsilon}(dx) := e^{\gamma h_{\epsilon}(x)} / \mathbb{E}[e^{\gamma h_{\epsilon}(x)}] dx$

- Usually, the approximating sequence h_ε is obtained via a sequence of mollifiers or a sequence of martingales.
- The limit is **non-trivial** for $\gamma \in (0, \sqrt{2d})$.

• Fix $\gamma > 0$. Given $(h_{\epsilon})_{\epsilon>0}$ a smooth approximation to h, we define **the GMC**_{γ} asso'd to h to be the random measure $\mu_{\gamma}(dx) := \lim_{\epsilon \to 0} \mu_{\gamma,\epsilon}(dx), \qquad \mu_{\gamma,\epsilon}(dx) := e^{\gamma h_{\epsilon}(x)} / \mathbb{E}[e^{\gamma h_{\epsilon}(x)}] dx$

- Usually, the approximating sequence h_ε is obtained via a sequence of mollifiers or a sequence of martingales.
- The limit is non-trivial for γ ∈ (0, √2d). Further, μ_γ(dx) does not depend on the approximating sequence, so we can really say "the GMC asso'd to *h*." [Kahane '85], [Robert-Vargas '10], [Shamov '16], [Berestycki '17]

• Fix $\gamma > 0$. Given $(h_{\epsilon})_{\epsilon>0}$ a smooth approximation to h, we define **the GMC**_{γ} asso'd to h to be the random measure $\mu_{\gamma}(dx) := \lim_{\epsilon \to 0} \mu_{\gamma,\epsilon}(dx), \qquad \mu_{\gamma,\epsilon}(dx) := e^{\gamma h_{\epsilon}(x)} / \mathbb{E}[e^{\gamma h_{\epsilon}(x)}] dx$

- Usually, the approximating sequence h_ε is obtained via a sequence of mollifiers or a sequence of martingales.
- The limit is non-trivial for γ ∈ (0, √2d). Further, μ_γ(dx) does not depend on the approximating sequence, so we can really say "the GMC asso'd to *h*." [Kahane '85], [Robert-Vargas '10], [Shamov '16], [Berestycki '17]
- Original motivations come from quantum field thoery [Høeg-Krohn '71] and turbulance [Mandelbrodt '85]. Further applications (beyond what's been mentioned) include 2D Liouville quantum gravity, finance.

• Some log-correlated fields are not Gaussian even in the limit.

- Some log-correlated fields are not Gaussian even in the limit.
- For such fields, the corresponding multiplicative chaos measure is then **not** expected to be **GMC**.

- Some log-correlated fields are not Gaussian even in the limit.
- For such fields, the corresponding multiplicative chaos measure is then **not** expected to be **GMC**.

- Some log-correlated fields are not Gaussian even in the limit.
- For such fields, the corresponding multiplicative chaos measure is then **not** expected to be **GMC**.

- 1. spectral measures built from general sequences of Verblunsky coefficients
 - [Lambert-Najnudel '24] develop tools that can address such general sequences. They raise the question of a.c. w.r.t. some GMC

- Some log-correlated fields are not Gaussian even in the limit.
- For such fields, the corresponding multiplicative chaos measure is then **not** expected to be **GMC**.

- 1. spectral measures built from general sequences of Verblunsky coefficients
 - [Lambert-Najnudel '24] develop tools that can address such general sequences. They raise the question of a.c. w.r.t. some GMC
- 2. spectral measure of $G\beta E$

- Some log-correlated fields are not Gaussian even in the limit.
- For such fields, the corresponding multiplicative chaos measure is then **not** expected to be **GMC**.

- 1. spectral measures built from general sequences of Verblunsky coefficients
 - [Lambert-Najnudel '24] develop tools that can address such general sequences. They raise the question of a.c. w.r.t. some GMC
- 2. spectral measure of $G\beta E$
- 3. Riemann zeta function
 - Non-Gaussianity comes from contribution of small primes.
 - [Saksman-Webb '20] showed, for a random model of zeta, the corresponding multiplicative chaos is absolutely continuous w.r.t. a coupled GMC, with bounded R-N derivative.

- 4. critical Stochastic Heat Flow (SHF) in two dimensions
 - log-correlated process of random measures on $\mathbb{R}^2,$ constructed by [Caravenna-Sun-Zygouras '23]
 - Another paper [Caravenna-Sun-Zygouras '23]: "The (one-time marginal of) critical 2d SHF is not a GMC"
 - They also raise question of absolute continuity w.r.t. some GMC

- 4. critical Stochastic Heat Flow (SHF) in two dimensions
 - log-correlated process of random measures on $\mathbb{R}^2,$ constructed by [Caravenna-Sun-Zygouras '23]
 - Another paper [Caravenna-Sun-Zygouras '23]: "The (one-time marginal of) critical 2d SHF is not a GMC"
 - They also raise question of absolute continuity w.r.t. some GMC
- 5. Brownian multiplicative chaos
 - Multiplicative chaos measure coming from the field of local times of 2D Brownian motion
 - Closure of support is the trajectory of a 2D Brownian motion
 - Originally constructed in L²-regime by [Bass-Burdzy-Khoshnevisan '94], in whole subcritical regime by [Aïdékon-Hu-Shi '20] and [Jego '20]
 - General characterization by [Jego '23], critical case by [Jego '21], connection with Brownian loop soup by [Aïdékon-Berestycki-Jego-Lupu '23]

• For
$$d = 1$$
, fix $D = [0, 1]$. Take $a_k^{(i)}$ i.i.d., $\mathbb{E}[a_1^{(1)}] = 0$,
 $\operatorname{Var}[a_1^{(1)}] = 1$, $\mathbb{E}[e^{\lambda a_1^{(1)}}] < \infty$ for all $\lambda \in \mathbb{R}$.

• For
$$d = 1$$
, fix $D = [0, 1]$. Take $a_k^{(i)}$ i.i.d., $\mathbb{E}[a_1^{(1)}] = 0$,
 $\operatorname{Var}[a_1^{(1)}] = 1$, $\mathbb{E}[e^{\lambda a_1^{(1)}}] < \infty$ for all $\lambda \in \mathbb{R}$. Define
 $S_{n,a}(x) := \sum_{k=1}^n \frac{1}{\sqrt{k}} \left(a_k^{(1)} \cos(2\pi kx) + a_k^{(2)} \sin(2\pi kx) \right)$

• For
$$d = 1$$
, fix $D = [0, 1]$. Take $a_k^{(i)}$ i.i.d., $\mathbb{E}[a_1^{(1)}] = 0$,
 $\operatorname{Var}[a_1^{(1)}] = 1$, $\mathbb{E}[e^{\lambda a_1^{(1)}}] < \infty$ for all $\lambda \in \mathbb{R}$. Define
 $S_{n,a}(x) := \sum_{k=1}^n \frac{1}{\sqrt{k}} \left(a_k^{(1)} \cos(2\pi kx) + a_k^{(2)} \sin(2\pi kx) \right)$

For d ≥ 2, fix D ⊂ ℝ^d bounded domain. Let {e_n}_{n∈ℕ} be an orthonormal basis of eigenfunctions of −Δ on D with Dirichlet boundary conditions, in increasing order of the corresponding eigenvalues λ_n.

• For
$$d = 1$$
, fix $D = [0, 1]$. Take $a_k^{(i)}$ i.i.d., $\mathbb{E}[a_1^{(1)}] = 0$,
 $\operatorname{Var}[a_1^{(1)}] = 1$, $\mathbb{E}[e^{\lambda a_1^{(1)}}] < \infty$ for all $\lambda \in \mathbb{R}$. Define
 $S_{n,a}(x) := \sum_{k=1}^n \frac{1}{\sqrt{k}} \left(a_k^{(1)} \cos(2\pi kx) + a_k^{(2)} \sin(2\pi kx) \right)$

For d ≥ 2, fix D ⊂ ℝ^d bounded domain. Let {e_n}_{n∈ℕ} be an orthonormal basis of eigenfunctions of −Δ on D with Dirichlet boundary conditions, in increasing order of the corresponding eigenvalues λ_n. Define

$$\mathcal{S}_{n,a}(x) := \frac{1}{(2\pi)^d} \sum_{\lambda_k \leq n} a_k \lambda_k^{-\frac{d}{4}} e_k(x) \, .$$

• For
$$d = 1$$
, fix $D = [0, 1]$. Take $a_k^{(i)}$ i.i.d., $\mathbb{E}[a_1^{(1)}] = 0$,
 $\operatorname{Var}[a_1^{(1)}] = 1$, $\mathbb{E}[e^{\lambda a_1^{(1)}}] < \infty$ for all $\lambda \in \mathbb{R}$. Define
 $S_{n,a}(x) := \sum_{k=1}^n \frac{1}{\sqrt{k}} \left(a_k^{(1)} \cos(2\pi kx) + a_k^{(2)} \sin(2\pi kx) \right)$

For d ≥ 2, fix D ⊂ ℝ^d bounded domain. Let {e_n}_{n∈ℕ} be an orthonormal basis of eigenfunctions of −Δ on D with Dirichlet boundary conditions, in increasing order of the corresponding eigenvalues λ_n. Define

$$\mathcal{S}_{n,a}(x) := \frac{1}{(2\pi)^d} \sum_{\lambda_k \leq n} a_k \lambda_k^{-\frac{d}{4}} e_k(x) \, .$$

• A computation shows that these are log-correlated fields.

• For
$$d = 1$$
, fix $D = [0, 1]$. Take $a_k^{(i)}$ i.i.d., $\mathbb{E}[a_1^{(1)}] = 0$,
 $\operatorname{Var}[a_1^{(1)}] = 1$, $\mathbb{E}[e^{\lambda a_1^{(1)}}] < \infty$ for all $\lambda \in \mathbb{R}$. Define
 $S_{n,a}(x) := \sum_{k=1}^n \frac{1}{\sqrt{k}} \left(a_k^{(1)} \cos(2\pi kx) + a_k^{(2)} \sin(2\pi kx) \right)$

For d ≥ 2, fix D ⊂ ℝ^d bounded domain. Let {e_n}_{n∈ℕ} be an orthonormal basis of eigenfunctions of −Δ on D with Dirichlet boundary conditions, in increasing order of the corresponding eigenvalues λ_n. Define

$$\mathcal{S}_{n,a}(x) := \frac{1}{(2\pi)^d} \sum_{\lambda_k \leq n} \mathsf{a}_k \lambda_k^{-\frac{d}{4}} \mathsf{e}_k(x) \,.$$

- A computation shows that these are log-correlated fields.
- Recall that when the a := g's are i.i.d. Gaussian and d = 1, S_{∞,a}(x) is the limiting field of CUE.

• For
$$d = 1$$
, fix $D = [0, 1]$. Take $a_k^{(i)}$ i.i.d., $\mathbb{E}[a_1^{(1)}] = 0$,
 $\operatorname{Var}[a_1^{(1)}] = 1$, $\mathbb{E}[e^{\lambda a_1^{(1)}}] < \infty$ for all $\lambda \in \mathbb{R}$. Define
 $S_{n,a}(x) := \sum_{k=1}^n \frac{1}{\sqrt{k}} \left(a_k^{(1)} \cos(2\pi kx) + a_k^{(2)} \sin(2\pi kx) \right)$

For d ≥ 2, fix D ⊂ ℝ^d bounded domain. Let {e_n}_{n∈ℕ} be an orthonormal basis of eigenfunctions of −Δ on D with Dirichlet boundary conditions, in increasing order of the corresponding eigenvalues λ_n. Define

$$\mathcal{S}_{n,a}(x) := \frac{1}{(2\pi)^d} \sum_{\lambda_k \leq n} \mathsf{a}_k \lambda_k^{-\frac{d}{4}} \mathsf{e}_k(x) \,.$$

- A computation shows that these are log-correlated fields.
- Recall that when the a := g's are i.i.d. Gaussian and d = 1, $S_{\infty,a}(x)$ is the limiting field of CUE. When d = 2, $S_{\infty,g}(x)$ is the GFF in D.

• For
$$a_k^{(i)} \sim \text{i.i.d.}$$
, $\mathbb{E}[a_1^{(1)}] = 0$, $\operatorname{Var}[a_1^{(1)}] = 1$, $\mathbb{E}[e^{\lambda a_1^{(1)}}] < \infty$ for all $\lambda \in \mathbb{R}$,

$$S_{n,a}(x) := \sum_{k=1}^{n} \frac{1}{\sqrt{k}} \Big(a_k^{(1)} \cos(2\pi kx) + a_k^{(2)} \sin(2\pi kx) \Big)$$

• For
$$a_k^{(i)} \sim \text{i.i.d.}$$
, $\mathbb{E}[a_1^{(1)}] = 0$, $\operatorname{Var}[a_1^{(1)}] = 1$, $\mathbb{E}[e^{\lambda a_1^{(1)}}] < \infty$ for all $\lambda \in \mathbb{R}$,

$$S_{n,a}(x) := \sum_{k=1}^{n} \frac{1}{\sqrt{k}} \left(a_k^{(1)} \cos(2\pi kx) + a_k^{(2)} \sin(2\pi kx) \right)$$

• Chaos measure:
$$\mu_{n,\gamma,a}(\mathsf{d} x) := \frac{e^{\gamma S_{n,a}(x)}}{\mathbb{E}[e^{\gamma S_{n,a}(x)}]}\mathsf{d} x \, .$$

• For
$$a_k^{(i)} \sim \text{i.i.d.}$$
, $\mathbb{E}[a_1^{(1)}] = 0$, $\operatorname{Var}[a_1^{(1)}] = 1$, $\mathbb{E}[e^{\lambda a_1^{(1)}}] < \infty$ for all $\lambda \in \mathbb{R}$,

$$S_{n,a}(x) := \sum_{k=1}^{n} \frac{1}{\sqrt{k}} \Big(a_k^{(1)} \cos(2\pi kx) + a_k^{(2)} \sin(2\pi kx) \Big)$$

- Chaos measure: $\mu_{n,\gamma,a}(\mathsf{d} x) := \frac{e^{\gamma S_{n,a}(x)}}{\mathbb{E}[e^{\gamma S_{n,a}(x)}]}\mathsf{d} x \, .$
- (Positive) Martingale structure:

$$\mathbb{E}[\mu_{n,\gamma,a}(A) \mid \mathcal{F}_{n-1}] = \int_{A} \mathbb{E}\Big[\frac{e^{\gamma S_{n,a}(x)}}{\mathbb{E}[e^{\gamma S_{n,a}(x)}]} \mid \mathcal{F}_{n-1}\Big] dx$$
$$= \int_{A} \frac{e^{\gamma S_{n-1,a}(x)}}{\mathbb{E}[e^{\gamma S_{n-1,a}(x)}]} dx = \mu_{n-1,\gamma,a}(A).$$

<u>Our model</u>: We'll take D = [0, 1] for simplicity.

• For
$$a_k^{(i)} \sim \text{i.i.d.}$$
, $\mathbb{E}[a_1^{(1)}] = 0$, $\operatorname{Var}[a_1^{(1)}] = 1$, $\mathbb{E}[e^{\lambda a_1^{(1)}}] < \infty$ for all $\lambda \in \mathbb{R}$,

$$S_{n,a}(x) := \sum_{k=1}^{n} \frac{1}{\sqrt{k}} \Big(a_k^{(1)} \cos(2\pi kx) + a_k^{(2)} \sin(2\pi kx) \Big)$$

- Chaos measure: $\mu_{n,\gamma,a}(\mathsf{d} x) := \frac{e^{\gamma S_{n,a}(x)}}{\mathbb{E}[e^{\gamma S_{n,a}(x)}]}\mathsf{d} x \, .$
- (Positive) Martingale structure:

$$\mathbb{E}[\mu_{n,\gamma,a}(A) \mid \mathcal{F}_{n-1}] = \int_{A} \mathbb{E}\Big[\frac{e^{\gamma S_{n,a}(x)}}{\mathbb{E}[e^{\gamma S_{n,a}(x)}]} \mid \mathcal{F}_{n-1}\Big] dx$$
$$= \int_{A} \frac{e^{\gamma S_{n-1,a}(x)}}{\mathbb{E}[e^{\gamma S_{n-1,a}(x)}]} dx = \mu_{n-1,\gamma,a}(A).$$

So, convergence as $n \to \infty$ of $\mu_{n,\gamma,a}$ is easy. Non-triviality of limit? ¹⁵

Our model:

$$\begin{aligned} S_{n,a}(x) &:= \sum_{k=1}^{n} \frac{1}{\sqrt{k}} \Big(a_k^{(1)} \cos(2\pi kx) + a_k^{(2)} \sin(2\pi kx) \Big) \\ \mu_{n,\gamma,a}(\mathrm{d}x) &:= e^{\gamma S_{n,a}(x)} / \mathbb{E}[e^{\gamma S_{n,a}(x)}] \, \mathrm{d}x \, . \end{aligned}$$

Our model:

$$\begin{split} S_{n,a}(x) &:= \sum_{k=1}^{n} \frac{1}{\sqrt{k}} \Big(a_k^{(1)} \cos(2\pi k x) + a_k^{(2)} \sin(2\pi k x) \Big) \\ \mu_{n,\gamma,a}(dx) &:= e^{\gamma S_{n,a}(x)} / \mathbb{E}[e^{\gamma S_{n,a}(x)}] \, dx \, . \end{split}$$

[Junnila, IMRN '18] shows the subcritical chaos is non-trivial:

 For γ ∈ (0, √2), ∃μ_{γ,a} non-degenerate measure such that
 lim μ_{n,γ,a} = μ_{γ,a} in probability.
 (in topology of weak convergence, Radon measures on [0, 1])

Our model:

$$\begin{split} S_{n,a}(x) &:= \sum_{k=1}^{n} \frac{1}{\sqrt{k}} \Big(a_k^{(1)} \cos(2\pi k x) + a_k^{(2)} \sin(2\pi k x) \Big) \\ \mu_{n,\gamma,a}(dx) &:= e^{\gamma S_{n,a}(x)} / \mathbb{E}[e^{\gamma S_{n,a}(x)}] \, dx \, . \end{split}$$

[Junnila, IMRN '18] shows the subcritical chaos is non-trivial:

• For $\gamma \in (0,\sqrt{2})$, $\exists \mu_{\gamma,a}$ non-degenerate measure such that

 $\lim_{n \to \infty} \mu_{n,\gamma,\mathbf{a}} = \mu_{\gamma,\mathbf{a}}$ in probability.

(in topology of weak convergence, Radon measures on $\left[0,1\right]$)

• For $\gamma \geq \sqrt{2}$, the limiting measure is degenerate.

Our model:

$$\begin{split} S_{n,a}(x) &:= \sum_{k=1}^{n} \frac{1}{\sqrt{k}} \Big(a_k^{(1)} \cos(2\pi k x) + a_k^{(2)} \sin(2\pi k x) \Big) \\ \mu_{n,\gamma,a}(dx) &:= e^{\gamma S_{n,a}(x)} / \mathbb{E}[e^{\gamma S_{n,a}(x)}] \, dx \, . \end{split}$$

[Junnila, IMRN '18] shows the subcritical chaos is non-trivial:

- For $\gamma \in (0,\sqrt{2})$, $\exists \mu_{\gamma, \textit{a}}$ non-degenerate measure such that

$$\lim_{n\to\infty}\mu_{n,\gamma,a}=\mu_{\gamma,a} \text{ in probability.}$$

(in topology of weak convergence, Radon measures on [0,1])

• For $\gamma \ge \sqrt{2}$, the limiting measure is degenerate. +Addresses more general class of non-Gaussian LCFs, also shows existence of moments, "analyticity in γ ."

Our model:

$$\begin{split} S_{n,a}(x) &:= \sum_{k=1}^{n} \frac{1}{\sqrt{k}} \Big(a_k^{(1)} \cos(2\pi k x) + a_k^{(2)} \sin(2\pi k x) \Big) \\ \mu_{n,\gamma,a}(dx) &:= e^{\gamma S_{n,a}(x)} / \mathbb{E}[e^{\gamma S_{n,a}(x)}] \, dx \, . \end{split}$$

[Junnila, IMRN '18] shows the subcritical chaos is non-trivial:

- For $\gamma \in (\mathbf{0},\sqrt{2}), \ \exists \mu_{\gamma,\textbf{a}}$ non-degenerate measure such that

$$\lim_{n\to\infty}\mu_{n,\gamma,a}=\mu_{\gamma,a} \text{ in probability.}$$

(in topology of weak convergence, Radon measures on [0,1])

For γ ≥ √2, the limiting measure is degenerate.
 +Addresses more general class of non-Gaussian LCFs, also shows existence of moments, "analyticity in γ."
 +Independence of μ_{γ,a} from approximating sequence is not known

Our model:

$$\begin{split} S_{n,a}(x) &:= \sum_{k=1}^{n} \frac{1}{\sqrt{k}} \Big(a_k^{(1)} \cos(2\pi k x) + a_k^{(2)} \sin(2\pi k x) \Big) \\ \mu_{n,\gamma,a}(dx) &:= e^{\gamma S_{n,a}(x)} / \mathbb{E}[e^{\gamma S_{n,a}(x)}] \, dx \, . \end{split}$$

[Junnila, IMRN '18] shows the subcritical chaos is non-trivial:

- For $\gamma \in (\mathbf{0},\sqrt{2}), \ \exists \mu_{\gamma,\textbf{a}}$ non-degenerate measure such that

 $\lim_{n \to \infty} \mu_{n,\gamma,\mathbf{a}} = \mu_{\gamma,\mathbf{a}}$ in probability.

(in topology of weak convergence, Radon measures on [0,1])

• For $\gamma \geq \sqrt{2}$, the limiting measure is degenerate. +Addresses more general class of non-Gaussian LCFs, also shows existence of moments, "analyticity in γ ." +Independence of $\mu_{\gamma,a}$ from approximating sequence is not known

Question: Does $\mu_{\gamma,a}$ resemble a GMC_{γ} in any way?

Main Result

Theorem (K.-Kriechbaum, '24)

Take $\gamma \in (1, \sqrt{2})$. There exists a sequence of i.i.d. standard Gaussians $g := (g_k^{(i)})_{k \in \mathbb{N}, i \in \{1,2\}}$ coupled to $a := (a_k^{(i)})$ such that $\mu_{\gamma,g}$ and $\mu_{\gamma,a}$ are mutually absolutely continuous, a.s.

• Here, $\mu_{\gamma,g}$ is the chaos asso'd to $S_{n,g}$ (Gaussian Fourier series)
Theorem (K.-Kriechbaum, '24)

Take $\gamma \in (1, \sqrt{2})$. There exists a sequence of i.i.d. standard Gaussians $g := (g_k^{(i)})_{k \in \mathbb{N}, i \in \{1,2\}}$ coupled to $a := (a_k^{(i)})$ such that $\mu_{\gamma,g}$ and $\mu_{\gamma,a}$ are mutually absolutely continuous, a.s.

Here, μ_{γ,g} is the chaos asso'd to S_{n,g} (Gaussian Fourier series)
It is a GMC_γ, so the result says μ_{γ,a} can be coupled to a GMC_γ such that the two are mutually a.c., a.s.

Theorem (K.-Kriechbaum, '24)

- Here, μ_{γ,g} is the chaos asso'd to S_{n,g} (Gaussian Fourier series)
 It is a GMC_γ, so the result says μ_{γ,a} can be coupled to a GMC_γ such that the two are mutually a.c., a.s.
- Result holds in general bdd domains in \mathbb{R}^d , for $\gamma \in (\sqrt{d}, \sqrt{2d})$.

Theorem (K.-Kriechbaum, '24)

- Here, μ_{γ,g} is the chaos asso'd to S_{n,g} (Gaussian Fourier series)
 It is a GMC_γ, so the result says μ_{γ,a} can be coupled to a GMC_γ such that the two are mutually a.c., a.s.
- Result holds in general bdd domains in \mathbb{R}^d , for $\gamma \in (\sqrt{d}, \sqrt{2d})$.
- Note: the L²-regime is γ ∈ (0, √d)! Here, GMC_γ(A) has finite 2nd moment, so things are usually easier...

Theorem (K.-Kriechbaum, '24)

- Here, μ_{γ,g} is the chaos asso'd to S_{n,g} (Gaussian Fourier series)
 It is a GMC_γ, so the result says μ_{γ,a} can be coupled to a GMC_γ such that the two are mutually a.c., a.s.
- Result holds in general bdd domains in \mathbb{R}^d , for $\gamma \in (\sqrt{d}, \sqrt{2d})$.
- Note: the L²-regime is γ ∈ (0, √d)! Here, GMC_γ(A) has finite 2nd moment, so things are usually easier...
 - Problem: extend to all γ ∈ (0, √2d), or construct an example in which behavior is actually different from GMC in L²-regime.

Theorem (K.-Kriechbaum, '24)

- Here, μ_{γ,g} is the chaos asso'd to S_{n,g} (Gaussian Fourier series)
 It is a GMC_γ, so the result says μ_{γ,a} can be coupled to a GMC_γ such that the two are mutually a.c., a.s.
- Result holds in general bdd domains in \mathbb{R}^d , for $\gamma \in (\sqrt{d}, \sqrt{2d})$.
- Note: the L²-regime is γ ∈ (0, √d)! Here, GMC_γ(A) has finite 2nd moment, so things are usually easier...
 - Problem: extend to all γ ∈ (0, √2d), or construct an example in which behavior is actually different from GMC in L²-regime.
 - Remark. Result seems to improve as more moments of a_k⁽ⁱ⁾ match those of a Gaussian (e.g. E[(a_k⁽ⁱ⁾)³] = 0)

$$S_{n,a}(x) := \sum_{k=1}^{2^n-1} \frac{a_k^{(1)} \cos(2\pi kx) + \dots \sin \dots}{\sqrt{k}}$$

$$S_{n,a}(x) := \sum_{k=1}^{2^n - 1} \frac{a_k^{(1)} \cos(2\pi kx) + \dots \sin \dots}{\sqrt{k}}$$
$$= \sum_{m=1}^n \left(\sum_{k=2^{m-1}}^{2^m - 1} \frac{a_k^{(1)} \cos(2\pi kx) + \dots \sin \dots}{\sqrt{k}}\right)$$

Consider a dyadically-growing subsequence of the field:

$$S_{n,a}(x) := \sum_{k=1}^{2^{n}-1} \frac{a_{k}^{(1)} \cos(2\pi kx) + \dots \sin \dots}{\sqrt{k}}$$
$$= \sum_{m=1}^{n} \left(\sum_{\substack{k=2^{m-1} \\ \approx \frac{1}{\sqrt{2^{m-1}}} \sum_{2^{m-1} \text{ terms}} (\text{i.i.d., variance 1})}^{2^{m-1}} \right)$$

 By CLT, the bracketed term is becoming more and more Gaussian as *m* increases... for fixed *x* ∈ [0, 1].

$$S_{n,a}(x) := \sum_{k=1}^{2^{n}-1} \frac{a_{k}^{(1)} \cos(2\pi kx) + \dots \sin \dots}{\sqrt{k}}$$
$$= \sum_{m=1}^{n} \left(\underbrace{\sum_{k=2^{m-1}}^{2^{m}-1} \frac{a_{k}^{(1)} \cos(2\pi kx) + \dots \sin \dots}{\sqrt{k}}}_{\approx \frac{1}{\sqrt{2^{m-1}}} \sum_{2^{m-1} \text{ terms (i.i.d., variance 1)}} \right)$$

- By CLT, the bracketed term is becoming more and more Gaussian as *m* increases... for fixed *x* ∈ [0, 1].
- We'll need to discretize [0,1] into a finite set,

$$S_{n,a}(x) := \sum_{k=1}^{2^{n}-1} \frac{a_{k}^{(1)} \cos(2\pi kx) + \dots \sin \dots}{\sqrt{k}}$$
$$= \sum_{m=1}^{n} \left(\underbrace{\sum_{k=2^{m-1}}^{2^{m}-1} \frac{a_{k}^{(1)} \cos(2\pi kx) + \dots \sin \dots}{\sqrt{k}}}_{\approx \frac{1}{\sqrt{2^{m-1}}} \sum_{2^{m-1} \text{ terms (i.i.d., variance 1)}} \right)$$

- By CLT, the bracketed term is becoming more and more Gaussian as *m* increases... for fixed *x* ∈ [0, 1].
- We'll need to discretize [0,1] into a finite set,
- then couple a well-chosen, sufficiently small subset of the bracketed terms with Gaussians.

• $S_{n,a}(x)$ and $S_{n,a}(x')$ have high-correlations when $|x - x'| \ll 2^{-n}$ (log-corr.)

- $S_{n,a}(x)$ and $S_{n,a}(x')$ have high-correlations when $|x x'| \ll 2^{-n}$ (log-corr.)
- Continuity/chaining argument to show $S_{n,a}(x)$ can be replaced with a field that is piecewise constant on intervals of length $\ll 2^{-n}$.

- $S_{n,a}(x)$ and $S_{n,a}(x')$ have high-correlations when $|x x'| \ll 2^{-n}$ (log-corr.)
- Continuity/chaining argument to show S_{n,a}(x) can be replaced with a field that is piecewise constant on intervals of length ≪ 2⁻ⁿ.
 - "replace" = the corresponding chaoses are a.c.

- $S_{n,a}(x)$ and $S_{n,a}(x')$ have high-correlations when $|x x'| \ll 2^{-n}$ (log-corr.)
- Continuity/chaining argument to show S_{n,a}(x) can be replaced with a field that is piecewise constant on intervals of length ≪ 2⁻ⁿ.
 - "replace" = the corresponding chaoses are a.c.
 - Note: like replacing [0,1] with a binary tree.

- $S_{n,a}(x)$ and $S_{n,a}(x')$ have high-correlations when $|x x'| \ll 2^{-n}$ (log-corr.)
- Continuity/chaining argument to show S_{n,a}(x) can be replaced with a field that is piecewise constant on intervals of length ≪ 2⁻ⁿ.
 - "replace" = the corresponding chaoses are a.c.
 - Note: like replacing [0, 1] with a binary tree.
 - Remark: requires regularity of the eigenfunctions.

 Using the idea that (G)MC_γ is supported on the set of γ-thick points, we'll couple the fields along these points only.

- Using the idea that (G)MC_γ is supported on the set of γ-thick points, we'll couple the fields along these points only.
 - Reduces the # of variables we need to couple

- Using the idea that (G)MC_γ is supported on the set of γ-thick points, we'll couple the fields along these points only.
 - Reduces the # of variables we need to couple
 - Remark: this is why we require γ ∈ (1, √2).
 #{γ-thick points} grows exponentially in γ as γ↓0.

- Using the idea that $(G)MC_{\gamma}$ is supported on the set of γ -thick points, we'll couple the fields along these points only.
 - Reduces the # of variables we need to couple
 - Remark: this is why we require γ ∈ (1, √2).
 #{γ-thick points} grows exponentially in γ as γ↓0.
- Coupling tool: Yurinskii coupling

(Step 3) Radon-Nikodym derivative.

(Step 3) Radon-Nikodym derivative.

 After (Steps 1, 2), we'll have reduced to two coupled models, non-Gaussian S_{n,ã} and Gaussian S_{n,g̃}, which can be thought of as defined on the binary tree.

(Step 3) Radon-Nikodym derivative.

- After (Steps 1, 2), we'll have reduced to two coupled models, non-Gaussian $\tilde{S}_{n,\tilde{a}}$ and Gaussian $\tilde{S}_{n,\tilde{g}}$, which can be thought of as defined on the binary tree.
- The obvious candidate for the R-N derivative between their associated chaoses is

$$\widetilde{R}_{\infty,\gamma}(x):=\ \lim_{n
ightarrow\infty}\widetilde{R}_{n,\gamma}(x)\, "\ , \quad \widetilde{R}_{n,\gamma}(x)\propto e^{\gamma(\widetilde{S}_{n,\widetilde{a}}(x)-\widetilde{S}_{n,\widetilde{g}}(x))}\,.$$

(Step 3) Radon-Nikodym derivative.

- After (Steps 1, 2), we'll have reduced to two coupled models, non-Gaussian S_{n,ã} and Gaussian S_{n,ğ}, which can be thought of as defined on the binary tree.
- The obvious candidate for the R-N derivative between their associated chaoses is

$$\widetilde{R}_{\infty,\gamma}(x):=\ \lim_{n o\infty}\widetilde{R}_{n,\gamma}(x)\, "\ , \quad \widetilde{R}_{n,\gamma}(x)\propto e^{\gamma(\widetilde{S}_{n,\widetilde{s}}(x)-\widetilde{S}_{n,\widetilde{g}}(x))}\,.$$

• Need to show integrability properties (e.g., uniform integrability) and convergence a.e. w.r.t. the chaos measures (not Lebesgue)

(Step 3) Radon-Nikodym derivative.

- After (Steps 1, 2), we'll have reduced to two coupled models, non-Gaussian S_{n,ã} and Gaussian S_{n,g̃}, which can be thought of as defined on the binary tree.
- The obvious candidate for the R-N derivative between their associated chaoses is

$$\widetilde{R}_{\infty,\gamma}(x) := \lim_{n \to \infty} \widetilde{R}_{n,\gamma}(x)$$
 ", $\widetilde{R}_{n,\gamma}(x) \propto e^{\gamma(\widetilde{S}_{n,\widetilde{s}}(x) - \widetilde{S}_{n,\widetilde{g}}(x))}$.

- Need to show integrability properties (e.g., uniform integrability) and convergence a.e. w.r.t. the chaos measures (not Lebesgue)
- The most technical step, occupies bulk of paper.

(Step 3) Radon-Nikodym derivative.

- After (Steps 1, 2), we'll have reduced to two coupled models, non-Gaussian S_{n,ã} and Gaussian S_{n,g̃}, which can be thought of as defined on the binary tree.
- The obvious candidate for the R-N derivative between their associated chaoses is

$$\widetilde{R}_{\infty,\gamma}(x) := \lim_{n \to \infty} \widetilde{R}_{n,\gamma}(x)$$
 , $\widetilde{R}_{n,\gamma}(x) \propto e^{\gamma(\widetilde{S}_{n,\widetilde{a}}(x) - \widetilde{S}_{n,\widetilde{g}}(x))}$.

- Need to show integrability properties (e.g., uniform integrability) and convergence a.e. w.r.t. the chaos measures (not Lebesgue)
- The most technical step, occupies bulk of paper.
- But robust: insensitive to choice of γ and domain D.

Recall

$$S_{n,a}(x) = \sum_{m=1}^{n} \left(\sum_{\substack{k=2^{m-1} \\ \approx \frac{1}{\sqrt{2^{m-1}}} \sum_{2^{m-1} \text{ terms}} (i.i.d., \text{ variance 1}) \approx N(0,1)}^{2^{m-1}} \right)$$

Recall

$$S_{n,a}(x) = \sum_{m=1}^{n} \left(\sum_{\substack{k=2^{m-1} \\ \approx \frac{1}{\sqrt{2^{m-1}}} \sum_{2^{m-1} \text{ terms}} (i.i.d., \text{ variance 1}) \approx N(0,1)}^{2^{m-1}} \right)$$

• Call
$$\widetilde{a}_m(x) := \sum_{k=2^{m-1}}^{2^m-1} \frac{a_k^{(1)} \cos(2\pi kx) + \dots \sin \dots}{\sqrt{k}}$$
 (the bracketed term).

Recall

$$S_{n,a}(x) = \sum_{m=1}^{n} \left(\sum_{\substack{k=2^{m-1} \\ \approx \frac{1}{\sqrt{2^{m-1}}} \sum_{2^{m-1} \text{ terms}} (i.i.d., \text{ variance 1}) \approx N(0,1)}^{2^{m-1}} \right)$$

• Call
$$\widetilde{a}_m(x) := \sum_{k=2^{m-1}}^{2^m-1} \frac{a_k^{(1)} \cos(2\pi kx) + \dots \sin \dots}{\sqrt{k}}$$
 (the bracketed term).

• Can compute $Cov(\widetilde{a}_m(x), \widetilde{a}_m(x')) \approx 1$ for $|x - x'| \ll 2^{-m}$.
Step 1 (discretization step)

Recall

$$S_{n,a}(x) = \sum_{m=1}^{n} \left(\sum_{\substack{k=2^{m-1} \\ \approx \frac{1}{\sqrt{2^{m-1}}} \sum_{2^{m-1} \text{ terms}} (\text{i.i.d., variance 1}) \approx N(0,1)}^{2^{m-1}} \right)$$

• Call
$$\widetilde{a}_m(x) := \sum_{k=2^{m-1}}^{2^m-1} \frac{a_k^{(1)} \cos(2\pi kx) + \dots \sin \dots}{\sqrt{k}}$$
 (the bracketed term).

- Can compute $Cov(\widetilde{a}_m(x), \widetilde{a}_m(x')) \approx 1$ for $|x x'| \ll 2^{-m}$.
 - So, the collection of "increments" (ã_m(x))_{x∈[0,1]} are ≈ constant on intervals of size ≪ 2^{-m}.

Step 1 (discretization step)

Recall

$$S_{n,a}(x) = \sum_{m=1}^{n} \left(\sum_{\substack{k=2^{m-1} \\ \approx \frac{1}{\sqrt{2^{m-1}}} \sum_{2^{m-1} \text{ terms}} (\text{i.i.d., variance 1}) \approx N(0,1)}^{2^{m-1}} \right)$$

• Call
$$\widetilde{a}_m(x) := \sum_{k=2^{m-1}}^{2^m-1} \frac{a_k^{(1)} \cos(2\pi kx) + \dots \sin \dots}{\sqrt{k}}$$
 (the bracketed term).

- Can compute $Cov(\widetilde{a}_m(x), \widetilde{a}_m(x')) \approx 1$ for $|x x'| \ll 2^{-m}$.
 - So, the collection of "increments" (ã_m(x))_{x∈[0,1]} are ≈ constant on intervals of size ≪ 2^{-m}.
 - Implies S_{n,a}(x) should behave like a binary branching random walk, so we should replace [0, 1] with a binary tree.

Step 1 (discretization step)

Recall

$$S_{n,a}(x) = \sum_{m=1}^{n} \left(\sum_{\substack{k=2^{m-1} \\ \approx \frac{1}{\sqrt{2^{m-1}}} \sum_{2^{m-1} \text{ terms}} (\text{i.i.d., variance 1}) \approx N(0,1)}^{2^{m-1}} \right)$$

• Call
$$\widetilde{a}_m(x) := \sum_{k=2^{m-1}}^{2^m-1} \frac{a_k^{(1)} \cos(2\pi kx) + \dots \sin \dots}{\sqrt{k}}$$
 (the bracketed term).

- Can compute $Cov(\widetilde{a}_m(x), \widetilde{a}_m(x')) \approx 1$ for $|x x'| \ll 2^{-m}$.
 - So, the collection of "increments" (ã_m(x))_{x∈[0,1]} are ≈ constant on intervals of size ≪ 2^{-m}.
 - Implies $S_{n,a}(x)$ should behave like a binary branching random walk, so we should replace [0, 1] with a binary tree.
 - Caveat: $(\tilde{a}_m(x))_{x \in [0,1]}$ are **not independent** across different x's

Step 1 (discretization step): Piecewise constant increments

Step 1 (discretization step): Piecewise constant increments

Recall
$$S_{n,a}(x) = \sum_{m=1}^{n} \widetilde{a}_m(x)$$
, and
 $\widetilde{a}_m(x) := \sum_{k=2^{m-1}}^{2^m-1} \frac{a_k^{(1)} \cos(2\pi kx) + \dots \sin \dots}{\sqrt{k}}$.

Step 1 (discretization step): Piecewise constant increments

Recall
$$S_{n,a}(x) = \sum_{m=1}^{n} \widetilde{a}_m(x)$$
, and
 $\widetilde{a}_m(x) := \sum_{k=2^{m-1}}^{2^m-1} \frac{a_k^{(1)} \cos(2\pi kx) + \dots \sin \dots}{\sqrt{k}}$

<u>Claim</u>: For each $m \in \mathbb{N}$, $\tilde{a}_m(x)$ is piecewise constant on intervals of length $\ll 2^{-m}$.

$$\frac{\text{Heuristic proof:}}{\widetilde{a}_m(x) - \widetilde{a}_m(x')} = \sum_{k=2^{m-1}}^{2^m-1} \frac{a_k^{(1)}}{\sqrt{k}} \Big(\cos(2\pi kx) - \cos(2\pi kx') \Big) + \dots \sin \dots \\
\approx \frac{1}{\sqrt{2^{m-1}}} \sum_{k=2^{m-1}}^{2^m-1} a_k^{(1)}} \underbrace{\Big(\cos(2\pi kx) - \cos(2\pi kx') \Big) + \dots \sin \dots}_{\text{By CLT, = }O(1)} \underbrace{\Big(\cos(2\pi kx) - \cos(2\pi kx') \Big) + \dots \sin \dots}_{\text{By Lipschitz cont., = }O(k \cdot |x-x'|) = O(2^m |x-x'|)} \\$$

(In reality, we need slightly more leaves than a binary tree.)

1. For each $m \in \mathbb{N}$, partition [0, 1] into 2^{m-1} intervals so that the level m + 1 partition is a refinement of the level m partition.

(In reality, we need slightly more leaves than a binary tree.)

- For each m ∈ N, partition [0, 1] into 2^{m-1} intervals so that the level m + 1 partition is a refinement of the level m partition.
 Let M := the collection of midnoints of the level m intervals.
- 2. Let $\mathcal{N}_m :=$ the collection of midpoints of the level *m* intervals.

(In reality, we need slightly more leaves than a binary tree.)

- For each m∈ N, partition [0, 1] into 2^{m-1} intervals so that the level m + 1 partition is a refinement of the level m partition.
 Let M = allocation of midmoints of the level m intervals
- 2. Let $\mathcal{N}_m :=$ the collection of midpoints of the level *m* intervals.
 - Can view $(\mathcal{N}_m)_{m\in\mathbb{N}}$ as a binary tree, $|\mathcal{N}_m|=2^{m-1}$

(In reality, we need slightly more leaves than a binary tree.)

For each m∈ N, partition [0, 1] into 2^{m-1} intervals so that the level m+1 partition is a refinement of the level m partition.
 Let N_m := the collection of midpoints of the level m intervals.

24

3. Fix $m \leq n$ and $v \in \mathcal{N}_n$. Define:

 $\widetilde{a}_m(v):=\widetilde{a}_m(w)\,,$ where $w\in\mathcal{N}_m$ is the ancestor of v ,

3. Fix $m \leq n$ and $v \in \mathcal{N}_n$. Define:

 $\widetilde{a}_m(v):=\widetilde{a}_m(w)\,,$ where $w\in\mathcal{N}_m$ is the ancestor of v ,

and the piecewise constant field

$$\widetilde{S}_{n,a}(x) := \widetilde{S}_{n,a}(v) = \sum_{m=1}^{n} \widetilde{a}_m(v)$$

where x is in the interval corresponding to $v \in \mathcal{N}_n$.

The two fields:

$$S_{n,a}(x) = \sum_{m=1}^{n} \widetilde{a}_m(x)$$
 and $\widetilde{S}_{n,a}(x) := \widetilde{S}_{n,a}(v) = \sum_{m=1}^{n} \widetilde{a}_m(v)$

The two fields:

$$S_{n,a}(x) = \sum_{m=1}^{n} \widetilde{a}_m(x)$$
 and $\widetilde{S}_{n,a}(x) := \widetilde{S}_{n,a}(v) = \sum_{m=1}^{n} \widetilde{a}_m(v)$

• A chaining argument + heuristic that $\widetilde{a}_m(x) \approx \widetilde{a}_m(v)$ yields:

$$\sup_{n\in\mathbb{N}}\sup_{x\in[0,1]}\left|S_{n,a}(x)-\widetilde{S}_{n,a}(x)\right|<\infty\quad a.s.$$

The two fields:

$$S_{n,a}(x) = \sum_{m=1}^{n} \widetilde{a}_m(x)$$
 and $\widetilde{S}_{n,a}(x) := \widetilde{S}_{n,a}(v) = \sum_{m=1}^{n} \widetilde{a}_m(v)$

- A chaining argument + heuristic that $\widetilde{a}_m(x) \approx \widetilde{a}_m(v)$ yields: $\sup_{n \in \mathbb{N}} \sup_{x \in [0,1]} \left| S_{n,a}(x) - \widetilde{S}_{n,a}(x) \right| < \infty \quad a.s.$
- Thus, the chaos μ̃_{γ,ã} asso'd to S̃_{n,a} is a.s. mutually absolutely continuous w.r.t. the chaos μ_{γ,a} asso'd to S_{n,a}:

$$\widetilde{\mu}_{\gamma,\widetilde{a}}(dx) := \lim_{n \to \infty} \frac{e^{\gamma \widetilde{S}_{n,a}(x)}}{\mathbb{E}[e^{\gamma \widetilde{S}_{n,a}(x)}]} dx$$
$$= \lim_{n \to \infty} \underbrace{e^{\gamma (S_{n,a}(x) - \widetilde{S}_{n,a}(x))} \cdot \frac{\mathbb{E}[e^{\gamma S_{n,a}(x)}]}{\mathbb{E}[e^{\gamma \widetilde{S}_{n,a}(x)}]}}_{\text{uniformly bounded, a.s.}} \cdot \underbrace{\frac{e^{\gamma S_{n,a}(x)}}{\mathbb{E}[e^{\gamma S_{n,a}(x)}]}}_{\mu_{n,\gamma,a} \to \mu_{\gamma,a}} dx$$

26

• We have reduced to a discrete tree model $(\widetilde{S}_{n,a}(v))_{v \in \mathcal{N}_n, n \in \mathbb{N}}$.

- We have reduced to a discrete tree model $(\widetilde{S}_{n,a}(v))_{v \in \mathcal{N}_n, n \in \mathbb{N}}$.
- Recall the collection of increments at level $m \in \mathbb{N}$:

$$\widetilde{a}_m(v) := \sum_{k=2^{m-1}}^{2^m-1} \frac{a_k^{(1)}\cos(2\pi kv) + \ldots \sin \ldots}{\sqrt{k}}, \ v \in \mathcal{N}_m.$$

- We have reduced to a discrete tree model $(\widetilde{S}_{n,a}(v))_{v \in \mathcal{N}_n, n \in \mathbb{N}}$.
- Recall the collection of increments at level $m \in \mathbb{N}$:

$$\widetilde{a}_m(v) := \sum_{k=2^{m-1}}^{2^m-1} \frac{a_k^{(1)}\cos(2\pi kv) + \dots \sin \dots}{\sqrt{k}}, \ v \in \mathcal{N}_m.$$

We wish to couple (*ã_m(v*))_{v∈Nm} with a Gaussian vector with same covariance.

- We have reduced to a discrete tree model $(\widetilde{S}_{n,a}(v))_{v \in \mathcal{N}_n, n \in \mathbb{N}}$.
- Recall the collection of increments at level $m \in \mathbb{N}$:

$$\widetilde{a}_m(v) := \sum_{k=2^{m-1}}^{2^m-1} \frac{a_k^{(1)}\cos(2\pi kv) + \dots \sin \dots}{\sqrt{k}}, \ v \in \mathcal{N}_m.$$

- We wish to couple (*ã_m(v*))_{v∈Nm} with a Gaussian vector with same covariance.
- The $(\widetilde{a}_m(v))_{v \in \mathcal{N}_m}$ are not indep. Also, $|\mathcal{N}_m| \approx 2^m$.

Fix $\mathcal{D} \subset \mathcal{N}_m$, and write the corresponding level-*m* increments as a sum of 2^{m-1} independent vectors in $\mathbb{R}^{|\mathcal{D}|}$:

$$\left(\tilde{a}_{m}(v)\right)_{v\in\mathcal{D}} = \sum_{k=2^{m-1}}^{2^{m}-1} \left(\frac{a_{k}^{(1)}\cos(2\pi kv) + a_{k}^{(2)}\sin(2\pi kv)}{\sqrt{k}}\right)_{v\in\mathcal{D}}$$

Fix $\mathcal{D} \subset \mathcal{N}_m$, and write the corresponding level-*m* increments as a sum of 2^{m-1} independent vectors in $\mathbb{R}^{|\mathcal{D}|}$:

$$\left(\widetilde{a}_{m}(v)\right)_{v\in\mathcal{D}} = \sum_{k=2^{m-1}}^{2^{m}-1} \left(\frac{a_{k}^{(1)}\cos(2\pi kv) + a_{k}^{(2)}\sin(2\pi kv)}{\sqrt{k}}\right)_{v\in\mathcal{D}}$$

Yurinskii coupling (Yurinskii '78, Belloni et. al. '19) Fix $M, D \in \mathbb{N}$. Let ξ_1, \ldots, ξ_M be independent, centered random \mathbb{R}^D -vectors. Let $\vec{a} := \sum_{k=1}^M \xi_k$. Then $\exists \vec{g} \sim N(0, \text{Cov}(\vec{a}))$ coupled to \vec{a} such that

$$\mathbb{P}\Big(\|\vec{a}-\vec{g}\|_{p} > \delta\Big) \leq \frac{1}{\delta^{3}} \sum_{k=1}^{M} \mathbb{E}\Big[\|\xi_{k}\|_{2}^{2} \cdot \|\xi_{k}\|_{p}\Big] + stuff$$

Fix $\mathcal{D} \subset \mathcal{N}_m$, and write the corresponding level-*m* increments as a sum of 2^{m-1} independent vectors in $\mathbb{R}^{|\mathcal{D}|}$:

$$\left(\widetilde{a}_m(v)\right)_{v\in\mathcal{D}} = \sum_{k=2^{m-1}}^{2^m-1} \underbrace{\left(\frac{a_k^{(1)}\cos(2\pi k v) + a_k^{(2)}\sin(2\pi k v) \dots}{\sqrt{k}}\right)_{v\in\mathcal{D}}}_{\xi_k}$$

Yurinskii coupling (Yurinskii '78, Belloni et. al. '19) Fix $M, D \in \mathbb{N}$. Let ξ_1, \ldots, ξ_M be independent, centered random \mathbb{R}^D -vectors. Let $\vec{a} := \sum_{k=1}^M \xi_k$. Then $\exists \vec{g} \sim N(0, \text{Cov}(\vec{a}))$ coupled to \vec{a} such that

$$\mathbb{P}\Big(\|\vec{a} - \vec{g}\|_{p} > \delta\Big) \leq \frac{1}{\delta^{3}} \sum_{k=1}^{M} \mathbb{E}\Big[\|\xi_{k}\|_{2}^{2} \cdot \|\xi_{k}\|_{p}\Big] + stuff$$

Fix $\mathcal{D} \subset \mathcal{N}_m$, and write the corresponding level-*m* increments as a sum of 2^{m-1} independent vectors in $\mathbb{R}^{|\mathcal{D}|}$:

$$\left(\widetilde{a}_m(v)\right)_{v\in\mathcal{D}} = \sum_{k=2^{m-1}}^{2^m-1} \underbrace{\left(\frac{a_k^{(1)}\cos(2\pi k v) + a_k^{(2)}\sin(2\pi k v) \dots}{\sqrt{k}}\right)_{v\in\mathcal{D}}}_{\xi_k}$$

Yurinskii coupling for us

(Fix
$$M = 2^{m-1}, D = |\mathcal{D}|$$
) Let $\vec{a} := (\tilde{a}_m(v))_{v \in \mathcal{D}} = \sum_{k=2^{m-1}}^{2^m-1} \xi_k$.

Then $\exists \vec{g} := (\widetilde{g}_m(v))_{v \in \mathcal{D}} \sim N(0, \operatorname{Cov}(\vec{a}))$ coupled to \vec{a} such that

$$\mathbb{P}\Big(\|\vec{a}-\vec{g}\|_{p} > \delta\Big) \leq \frac{1}{\delta^{3}} \sum_{k=2^{m-1}}^{2^{m}-1} \mathbb{E}\Big[\|\xi_{k}\|_{2}^{2} \cdot \|\xi_{k}\|_{p}\Big] + stuff$$

Let's estimate the error term:

$$\mathbb{P}\Big(\|\vec{a} - \vec{g}\|_{p} > \delta\Big) \leq \frac{1}{\delta^{3}} \sum_{k=2^{m-1}}^{2^{m-1}} \mathbb{E}\Big[\|\xi_{k}\|_{2}^{2} \cdot \|\xi_{k}\|_{p}\Big] + stuff ,$$

$$\xi_k := \left(\frac{a_k^{(1)}\cos(2\pi kv) + a_k^{(2)}\sin(2\pi kv)\dots}{\sqrt{k}}\right)_{v \in \mathcal{D}}$$

Let's estimate the error term:

$$\mathbb{P}\Big(\|\vec{a} - \vec{g}\|_{p} > \delta\Big) \leq \frac{1}{\delta^{3}} \sum_{k=2^{m-1}}^{2^{m-1}} \mathbb{E}\Big[\|\xi_{k}\|_{2}^{2} \cdot \|\xi_{k}\|_{p}\Big] + stuff ,$$

where

$$\xi_k := \Big(\frac{a_k^{(1)}\cos(2\pi kv) + a_k^{(2)}\sin(2\pi kv)\dots}{\sqrt{k}}\Big)_{v \in \mathcal{D}}$$

• Note ξ_k only has 2 sources of randomness: $a_k^{(1)}$ and $a_k^{(2)}$.

Let's estimate the error term:

$$\mathbb{P}\Big(\|\vec{a} - \vec{g}\|_{p} > \delta\Big) \leq \frac{1}{\delta^{3}} \sum_{k=2^{m-1}}^{2^{m-1}} \mathbb{E}\Big[\|\xi_{k}\|_{2}^{2} \cdot \|\xi_{k}\|_{p}\Big] + stuff ,$$

$$\xi_k := \left(\frac{a_k^{(1)}\cos(2\pi kv) + a_k^{(2)}\sin(2\pi kv)\dots}{\sqrt{k}}\right)_{v \in \mathcal{D}}$$

- Note ξ_k only has 2 sources of randomness: $a_k^{(1)}$ and $a_k^{(2)}$.
- Also, for the D we eventually choose, we can assume the cos and sin are bounded away from 0 for a positive proportion of the v's.

Let's estimate the error term:

$$\mathbb{P}\Big(\|\vec{a} - \vec{g}\|_{p} > \delta\Big) \leq \frac{1}{\delta^{3}} \sum_{k=2^{m-1}}^{2^{m-1}} \mathbb{E}\Big[\|\xi_{k}\|_{2}^{2} \cdot \|\xi_{k}\|_{p}\Big] + stuff ,$$

$$\xi_k := \left(\frac{a_k^{(1)}\cos(2\pi kv) + a_k^{(2)}\sin(2\pi kv)\dots}{\sqrt{k}}\right)_{v \in \mathcal{D}}.$$

- Note ξ_k only has 2 sources of randomness: $a_k^{(1)}$ and $a_k^{(2)}$.
- Also, for the D we eventually choose, we can assume the cos and sin are bounded away from 0 for a positive proportion of the v's.

$$\|\xi_k\|_p \approx \frac{\max(|a_k^{(-)}|, |a_k^{(-)}|)}{k^{1/2}} \|(1, \dots, 1)\|_p \asymp 2^{-\frac{m}{2}} \max(|a_k^{(1)}|, |a_k^{(2)}|) |\mathcal{D}|^{\frac{1}{p}}.$$

Let's estimate the error term:

$$\mathbb{P}\Big(\|\vec{a} - \vec{g}\|_{p} > \delta\Big) \leq \frac{1}{\delta^{3}} \sum_{k=2^{m-1}}^{2^{m-1}} \mathbb{E}\Big[\|\xi_{k}\|_{2}^{2} \cdot \|\xi_{k}\|_{p}\Big] + stuff ,$$

$$\xi_k := \left(\frac{a_k^{(1)}\cos(2\pi kv) + a_k^{(2)}\sin(2\pi kv)\dots}{\sqrt{k}}\right)_{v \in \mathcal{D}}$$

- Note ξ_k only has 2 sources of randomness: $a_k^{(1)}$ and $a_k^{(2)}$.
- Also, for the \mathcal{D} we eventually choose, we can assume the cos and sin are bounded away from 0 for a positive proportion of the v's. $\|\xi_k\|_p \approx \frac{\max(|a_k^{(1)}|, |a_k^{(2)}|)}{k^{1/2}} \|(1, \dots, 1)\|_p \asymp 2^{-\frac{m}{2}} \max(|a_k^{(1)}|, |a_k^{(2)}|) |\mathcal{D}|^{\frac{1}{p}}.$
- Minimized when $p = \infty$!

Fix $\mathcal{D} \subset \mathcal{N}_m$, and write the corresponding level-*m* increments as a sum of 2^{m-1} independent vectors in $\mathbb{R}^{|\mathcal{D}|}$:

$$\left(\widetilde{a}_m(v)\right)_{v\in\mathcal{D}} = \sum_{k=2^{m-1}}^{2^m-1} \underbrace{\left(\frac{a_k^{(1)}\cos(2\pi k v) + a_k^{(2)}\sin(2\pi k v) \dots}{\sqrt{k}}\right)_{v\in\mathcal{D}}}_{\xi_k}$$

Yurinskii coupling for us

Fix
$$M = 2^{m-1}, D = |\mathcal{D}|$$
. Let $\vec{a} := (\widetilde{a}_m(v))_{v \in \mathcal{D}} = \sum_{k=2^{m-1}}^{2^m-1} \xi_k$.

Then $\exists \vec{g} := (\widetilde{g}_m(v))_{v \in \mathcal{D}} \sim N(0, \operatorname{Cov}(\vec{a}))$ coupled to \vec{a} such that

$$\mathbb{P}\Big(\|\vec{a}-\vec{g}\|_{p} > \delta\Big) \leq \frac{1}{\delta^{3}} \sum_{k=2^{m-1}}^{2^{m}-1} \mathbb{E}\Big[\|\xi_{k}\|_{2}^{2} \cdot \|\xi_{k}\|_{p}\Big] + stuff$$

Fix $\mathcal{D} \subset \mathcal{N}_m$, and write the corresponding level-*m* increments as a sum of 2^{m-1} independent vectors in $\mathbb{R}^{|\mathcal{D}|}$:

$$\left(\widetilde{a}_m(v)\right)_{v\in\mathcal{D}} = \sum_{k=2^{m-1}}^{2^m-1} \underbrace{\left(\frac{a_k^{(1)}\cos(2\pi k v) + a_k^{(2)}\sin(2\pi k v) \dots}{\sqrt{k}}\right)_{v\in\mathcal{D}}}_{\xi_k}$$

Yurinskii coupling for us

Fix
$$M = 2^{m-1}, D = |\mathcal{D}|$$
. Let $\vec{a} := (\widetilde{a}_m(v))_{v \in \mathcal{D}} = \sum_{k=2^{m-1}}^{2^m-1} \xi_k$.
Then $\exists \vec{g} := (\widetilde{g}_m(v))_{v \in \mathcal{D}} \sim N(0, \operatorname{Cov}(\vec{a}))$ coupled to \vec{a} such that
$$\mathbb{P}\Big(\|\vec{a} - \vec{g}\|_{\infty} > m^{-2}\Big) \leq Cm^6 2^{-n/2} |\mathcal{D}|.$$

Fix $\mathcal{D} \subset \mathcal{N}_m$, and write the corresponding level-*m* increments as a sum of 2^{m-1} independent vectors in $\mathbb{R}^{|\mathcal{D}|}$:

$$\left(\widetilde{a}_m(v)\right)_{v\in\mathcal{D}} = \sum_{k=2^{m-1}}^{2^m-1} \underbrace{\left(\frac{a_k^{(1)}\cos(2\pi k v) + a_k^{(2)}\sin(2\pi k v) \dots}{\sqrt{k}}\right)_{v\in\mathcal{D}}}_{\xi_k}$$

Yurinskii coupling for us

Fix
$$M = 2^{m-1}, D = |\mathcal{D}|$$
. Let $\vec{a} := (\widetilde{a}_m(v))_{v \in \mathcal{D}} = \sum_{k=2^{m-1}}^{2^m-1} \xi_k$.

Then $\exists \vec{g} := (\widetilde{g}_m(v))_{v \in \mathcal{D}} \sim N(0, \operatorname{Cov}(\vec{a}))$ coupled to \vec{a} such that

$$\mathbb{P}\Big(\|ec{a}-ec{g}\|_\infty>m^{-2}\Big)\leq Cm^62^{-n/2}|\mathcal{D}|\,.$$

Q: What should $\mathcal{D} \subset \mathcal{N}_m$ be?

Step 2 (Coupling step): Thick points

• Key fact: (G)MC $_{\gamma}$ is supported on the γ -thick points of the field

$$\mathcal{T} := \left\{ x \in [0,1] : \liminf_{n \to \infty} \frac{\widetilde{S}_{n,\widetilde{a}}(x)}{(\log 2)n} = \gamma \right\}, \quad \mathsf{MC}_{\gamma}(\mathcal{T}^c) = 0.$$
• Key fact: (G)MC $_{\gamma}$ is supported on the γ -thick points of the field

$$\mathcal{T} := \left\{ x \in [0,1] : \liminf_{n \to \infty} \frac{\widetilde{S}_{n,\widetilde{s}}(x)}{(\log 2)n} = \gamma \right\}, \quad \mathsf{MC}_{\gamma}(\mathcal{T}^c) = 0.$$

Gaussian heuristic: if $G \sim \mathbb{P}$ is a Gaussian with variance $(\log 2)n$, typically $G \asymp \sqrt{n}$.

• Key fact: (G)MC $_{\gamma}$ is supported on the γ -thick points of the field

$$\mathcal{T} := \left\{ x \in [0,1] : \liminf_{n \to \infty} \frac{\widetilde{S}_{n,\widetilde{s}}(x)}{(\log 2)n} = \gamma \right\}, \quad \mathsf{MC}_{\gamma}(\mathcal{T}^c) = 0.$$

Gaussian heuristic: if $G \sim \mathbb{P}$ is a Gaussian with variance $(\log 2)n$, typically $G \asymp \sqrt{n}$. But under $d\mathbb{Q} := e^{\gamma G} / \mathbb{E}[e^{\gamma G}] d\mathbb{P}$,

G is still a Gaussian with mean $\mathbb{E}[G] = \gamma(\log 2)n$ (and same variance as before) – *Girsanov*.

• Key fact: (G)MC $_{\gamma}$ is supported on the γ -thick points of the field

$$\mathcal{T} := \left\{ x \in [0,1] : \liminf_{n \to \infty} \frac{\widetilde{S}_{n,\widetilde{s}}(x)}{(\log 2)n} = \gamma \right\}, \quad \mathsf{MC}_{\gamma}(\mathcal{T}^c) = 0.$$

Gaussian heuristic: if $G \sim \mathbb{P}$ is a Gaussian with variance $(\log 2)n$, typically $G \asymp \sqrt{n}$. But under $d\mathbb{Q} := e^{\gamma G} / \mathbb{E}[e^{\gamma G}] d\mathbb{P}$,

G is still a Gaussian with mean $\mathbb{E}[G] = \gamma(\log 2)n$ (and same variance as before) – *Girsanov*.

 $\bullet \implies \text{It should be sufficient to couple along } \mathcal{T}.$

• Key fact: (G)MC $_{\gamma}$ is supported on the γ -thick points of the field

$$\mathcal{T} := \left\{ x \in [0,1] : \liminf_{n \to \infty} \frac{\widetilde{S}_{n,\widetilde{s}}(x)}{(\log 2)n} = \gamma \right\}, \quad \mathsf{MC}_{\gamma}(\mathcal{T}^c) = 0.$$

Gaussian heuristic: if $G \sim \mathbb{P}$ is a Gaussian with variance $(\log 2)n$, typically $G \asymp \sqrt{n}$. But under $d\mathbb{Q} := e^{\gamma G} / \mathbb{E}[e^{\gamma G}] d\mathbb{P}$,

G is still a Gaussian with mean $\mathbb{E}[G] = \gamma(\log 2)n$ (and same variance as before) – *Girsanov*.

- \implies It should be sufficient to couple along \mathcal{T} .
- But \mathcal{T} is defined in terms of a limit, and our coupling scheme goes level-by-level... want finite-*n* version of thick points.

• Recall $\widetilde{S}_{n,\widetilde{a}}(x) = \sum_{m=1}^{n} \widetilde{a}_m(x)$ is a bona-fide random walk-in-*n*.

- Recall $\widetilde{S}_{n,\widetilde{a}}(x) = \sum_{m=1}^{n} \widetilde{a}_m(x)$ is a bona-fide random walk-in-*n*.
- If x is thick, this means (*S̃_{n,ã̃}(x)*)_{n∈ℕ} looks like a Brownian motion with drift γ log 2.

- Recall $\widetilde{S}_{n,\widetilde{a}}(x) = \sum_{m=1}^{n} \widetilde{a}_{m}(x)$ is a bona-fide random walk-in-*n*.
- If x is thick, this means (S̃_{n,ã}(x))_{n∈ℕ} looks like a Brownian motion with drift γ log 2.
- Idea: a BM with drift $\gamma \log 2$ stays above the line $\ell(t) = (\gamma \delta)(\log 2)t$ eventually a.s., for any $\delta > 0$.

- Recall $\widetilde{S}_{n,\widetilde{a}}(x) = \sum_{m=1}^{n} \widetilde{a}_{m}(x)$ is a bona-fide random walk-in-*n*.
- If x is thick, this means (S̃_{n,ã}(x))_{n∈ℕ} looks like a Brownian motion with drift γ log 2.
- Idea: a BM with drift $\gamma \log 2$ stays above the line

Figure 1: Trajectory of the walk at a thick point. After some random time $\tau(\delta) < \infty$ a.s., it should stay above $\ell(t)$.

Our coupling strategy follows an inductive scheme:

Our coupling strategy follows an inductive scheme:

• Suppose we have already coupled the first *n* levels:

Our coupling strategy follows an inductive scheme:

- Suppose we have already coupled the first *n* levels:
 - constructed Gaussians $(\widetilde{g}_m(v))_{v\in\mathcal{N}_m,m\leq n}$ with same covariance as $(\widetilde{a}_m(v))_{v\in\mathcal{N}_m,m\leq n}$

Our coupling strategy follows an inductive scheme:

- Suppose we have already coupled the first *n* levels:
 - constructed Gaussians $(\widetilde{g}_m(v))_{v \in \mathcal{N}_m, m \leq n}$ with same covariance as $(\widetilde{a}_m(v))_{v \in \mathcal{N}_m, m \leq n}$
- Define the (time *n*) thick points:

$$\begin{split} \mathcal{T}_{n,\gamma,\widetilde{a}} &:= \left\{ v \in \mathcal{N}_n : \widetilde{S}_{n,\widetilde{a}}(v) \geq \log(2)(\gamma - \delta)n \right\} \\ \mathcal{T}_{n,\gamma,\widetilde{g}} &:= \left\{ v \in \mathcal{N}_n : \widetilde{S}_{n,\widetilde{g}}(v) \geq \log(2)(\gamma - \delta)n \right\} \\ \mathcal{T}_{n,\gamma} &:= \mathcal{T}_{n,\gamma,\widetilde{a}} \cup \mathcal{T}_{n,\gamma,\widetilde{g}} \,. \end{split}$$

Our coupling strategy follows an inductive scheme:

- Suppose we have already coupled the first *n* levels:
 - constructed Gaussians $(\widetilde{g}_m(v))_{v \in \mathcal{N}_m, m \leq n}$ with same covariance as $(\widetilde{a}_m(v))_{v \in \mathcal{N}_m, m \leq n}$
- Define the (time *n*) thick points:

$$egin{aligned} \mathcal{T}_{n,\gamma,\widetilde{a}} &:= \left\{ v \in \mathcal{N}_n : \widetilde{S}_{n,\widetilde{a}}(v) \geq \log(2)(\gamma-\delta)n
ight\} \ \mathcal{T}_{n,\gamma,\widetilde{g}} &:= \left\{ v \in \mathcal{N}_n : \widetilde{S}_{n,\widetilde{g}}(v) \geq \log(2)(\gamma-\delta)n
ight\} \ \mathcal{T}_{n,\gamma} &:= \mathcal{T}_{n,\gamma,\widetilde{a}} \cup \mathcal{T}_{n,\gamma,\widetilde{g}} \,. \end{aligned}$$

• Define the random set of direct descendants of $\mathcal{T}_{n,\gamma}$:

 $\mathcal{N}_{n+1}(\mathcal{T}_{n,\gamma}) := \left\{ v \in \mathcal{N}_{n+1} : \exists w \in \mathcal{T}_{n,\gamma} \text{ such that } v \text{ descends from } w \right\}.$

Our coupling strategy follows an inductive scheme:

- Suppose we have already coupled the first *n* levels:
 - constructed Gaussians $(\widetilde{g}_m(v))_{v \in \mathcal{N}_m, m \leq n}$ with same covariance as $(\widetilde{a}_m(v))_{v \in \mathcal{N}_m, m \leq n}$
- Define the (time *n*) thick points:

$$egin{aligned} \mathcal{T}_{n,\gamma,\widetilde{a}} &:= \left\{ v \in \mathcal{N}_n : \widetilde{S}_{n,\widetilde{a}}(v) \geq \log(2)(\gamma-\delta)n
ight\} \ \mathcal{T}_{n,\gamma,\widetilde{g}} &:= \left\{ v \in \mathcal{N}_n : \widetilde{S}_{n,\widetilde{g}}(v) \geq \log(2)(\gamma-\delta)n
ight\} \ \mathcal{T}_{n,\gamma} &:= \mathcal{T}_{n,\gamma,\widetilde{a}} \cup \mathcal{T}_{n,\gamma,\widetilde{g}} \,. \end{aligned}$$

• Define the random set of direct descendants of $\mathcal{T}_{n,\gamma}$:

 $\mathcal{N}_{n+1}(\mathcal{T}_{n,\gamma}) := \{ v \in \mathcal{N}_{n+1} : \exists w \in \mathcal{T}_{n,\gamma} \text{ such that } v \text{ descends from } w \}.$

• Our Yurinskii coupling takes place on $(\widetilde{a}_{n+1}(v))_{v \in \mathcal{N}_{n+1}(\mathcal{T}_{n,\gamma})}$. Crucially, these values are still independent of levels 1 to n. 34

Yurinskii:
$$\mathbb{P}\left(\|\vec{a}-\vec{g}\|_{\infty}>n^{-2}\right) \leq Cn^{6}2^{-n/2}|\mathcal{D}|$$

Yurinskii:
$$\mathbb{P}\left(\|\vec{a}-\vec{g}\|_{\infty}>n^{-2}\right) \leq Cn^{6}2^{-n/2}|\mathcal{D}|$$

• We take $\mathcal{D} := \mathcal{N}_{n+1}(\mathcal{T}_{n,\gamma})$. Let's count thick points.

 $|\mathcal{D}| \approx 2\mathbb{E}|\mathcal{T}_{n,\gamma}|$

Yurinskii:
$$\mathbb{P}\left(\|\vec{a}-\vec{g}\|_{\infty}>n^{-2}\right)\leq Cn^{6}2^{-n/2}|\mathcal{D}|$$

$$egin{aligned} |\mathcal{D}| &pprox 2\mathbb{E}|\mathcal{T}_{n,\gamma}| \ &pprox 2\cdot 2^n\cdot \mathbb{P}\Big(\widetilde{S}_{n,\widetilde{g}}(v) \geq (\gamma-\delta)(\log 2)n\Big) \end{aligned}$$

Yurinskii:
$$\mathbb{P}\left(\|ec{a}-ec{g}\|_{\infty}>n^{-2}
ight)\leq Cn^{6}2^{-n/2}|\mathcal{D}|$$

$$egin{aligned} |\mathcal{D}| &pprox 2\mathbb{E}|\mathcal{T}_{n,\gamma}| \ &pprox 2\cdot 2^n\cdot\mathbb{P}\Big(\widetilde{S}_{n,\widetilde{g}}(v) \geq (\gamma-\delta)(\log 2)n\Big) \ &pprox 2\cdot 2^{n-rac{(\gamma-\delta)^2}{2}n} \end{aligned}$$

Yurinskii:
$$\mathbb{P}\left(\|ec{a}-ec{g}\|_{\infty}>n^{-2}
ight)\leq Cn^{6}2^{-n/2}|\mathcal{D}|$$

$$\begin{split} |\mathcal{D}| &\approx 2\mathbb{E}|\mathcal{T}_{n,\gamma}| \\ &\approx 2 \cdot 2^n \cdot \mathbb{P}\Big(\widetilde{S}_{n,\widetilde{g}}(\nu) \geq (\gamma - \delta)(\log 2)n\Big) \\ &\approx 2 \cdot 2^{n - \frac{(\gamma - \delta)^2}{2}n} \\ &\implies \mathbb{P}\Big(\|\vec{a} - \vec{g}\|_{\infty} > n^{-2}\Big) \leq Cn^6 2^{\frac{n}{2}(1 - (\gamma - \delta)^2)} \end{split}$$

Yurinskii:
$$\mathbb{P}\left(\|ec{a}-ec{g}\|_{\infty}>n^{-2}
ight)\leq Cn^{6}2^{-n/2}|\mathcal{D}|$$

$$\begin{split} |\mathcal{D}| &\approx 2\mathbb{E}|\mathcal{T}_{n,\gamma}| \\ &\approx 2 \cdot 2^n \cdot \mathbb{P}\Big(\widetilde{S}_{n,\widetilde{g}}(\nu) \geq (\gamma - \delta)(\log 2)n\Big) \\ &\approx 2 \cdot 2^{n - \frac{(\gamma - \delta)^2}{2}n} \\ &\implies \mathbb{P}\Big(\|\vec{a} - \vec{g}\|_{\infty} > n^{-2}\Big) \leq Cn^6 2^{\frac{n}{2}(1 - (\gamma - \delta)^2)} \end{split}$$

Yurinskii:
$$\mathbb{P}\Big(\|ec{a} - ec{g}\|_{\infty} > n^{-2}\Big) \leq Cn^6 2^{-n/2} |\mathcal{D}|$$

• We take $\mathcal{D} := \mathcal{N}_{n+1}(\mathcal{T}_{n,\gamma})$. Let's count thick points.

$$\begin{split} |\mathcal{D}| &\approx 2\mathbb{E}|\mathcal{T}_{n,\gamma}| \\ &\approx 2 \cdot 2^n \cdot \mathbb{P}\Big(\widetilde{S}_{n,\widetilde{g}}(v) \geq (\gamma - \delta)(\log 2)n\Big) \\ &\approx 2 \cdot 2^{n - \frac{(\gamma - \delta)^2}{2}n} \\ &\implies \mathbb{P}\Big(\|\vec{a} - \vec{g}\|_{\infty} > n^{-2}\Big) \leq Cn^6 2^{\frac{n}{2}(1 - (\gamma - \delta)^2)} \end{split}$$

• Summable only if $\gamma > 1$ (hence the condition in the theorem).

Yurinskii:
$$\mathbb{P}\left(\|\vec{a}-\vec{g}\|_{\infty}>n^{-2}\right)\leq Cn^{6}2^{-n/2}|\mathcal{D}|$$

$$egin{aligned} |\mathcal{D}| &pprox 2\mathbb{E} |\mathcal{T}_{n,\gamma}| \ &pprox 2\cdot 2^n\cdot \mathbb{P}\Big(\widetilde{S}_{n,\widetilde{g}}(\mathbf{v}) \geq (\gamma-\delta)(\log 2)n\Big) \ &pprox 2\cdot 2^{n-rac{(\gamma-\delta)^2}{2}n} \end{aligned}$$

$$\implies \mathbb{P}\Big(\|\vec{a}-\vec{g}\|_{\infty}>n^{-2}\Big) \leq Cn^{6}2^{\frac{n}{2}(1-(\gamma-\delta)^{2})}$$

- Summable only if $\gamma > 1$ (hence the condition in the theorem).
- +Borel-Cantelli: thick descendants v ∈ N_{n+1}(T_{n,γ}) are coupled to Gaussians g̃_{n+1}(v) such that

$$\|\widetilde{g}_{n+1}(v) - \widetilde{a}_{n+1}(v)\|_{L^\infty(\mathcal{N}_{n+1}(\mathcal{T}_{n,\gamma}))} \leq n^{-2}\,,$$
 eventually a.s.

Yurinskii:
$$\mathbb{P}\Big(\|ec{a} - ec{g}\|_{\infty} > n^{-2}\Big) \leq Cn^6 2^{-n/2} |\mathcal{D}|$$

• We take $\mathcal{D} := \mathcal{N}_{n+1}(\mathcal{T}_{n,\gamma})$. Let's count thick points.

$$egin{aligned} |\mathcal{D}| &pprox 2\mathbb{E} |\mathcal{T}_{n,\gamma}| \ &pprox 2\cdot 2^n\cdot \mathbb{P}\Big(\widetilde{S}_{n,\widetilde{g}}(\mathbf{v}) \geq (\gamma-\delta)(\log 2)n\Big) \ &pprox 2\cdot 2^{n-rac{(\gamma-\delta)^2}{2}n} \end{aligned}$$

$$\implies \mathbb{P}\Big(\|\vec{a}-\vec{g}\|_{\infty}>n^{-2}\Big) \leq Cn^{6}2^{\frac{n}{2}(1-(\gamma-\delta)^{2})}$$

- Summable only if $\gamma > 1$ (hence the condition in the theorem).
- +Borel-Cantelli: thick descendants v ∈ N_{n+1}(T_{n,γ}) are coupled to Gaussians g̃_{n+1}(v) such that

 $\|\widetilde{g}_{n+1}(v) - \widetilde{a}_{n+1}(v)\|_{L^{\infty}(\mathcal{N}_{n+1}(\mathcal{T}_{n,\gamma}))} \leq n^{-2}\,,$ eventually a.s.

• Can extend to $(\widetilde{g}_{n+1}(v))_{v \in \mathcal{N}_{n+1}}$ so that its covariance matches $(\widetilde{a}_{n+1}(v))_{v \in \mathcal{N}_{n+1}}$.

In Step 1, we constructed the tree model S_{n,ã} from the Fourier series S_{n,a}.

- In Step 1, we constructed the tree model S_{n,ã} from the Fourier series S_{n,a}.
- In Step 2, we constructed the Gaussian tree model $\widetilde{S}_{n,\widetilde{g}}$ coupled to $\widetilde{S}_{n,\widetilde{a}}$.

- In Step 1, we constructed the tree model S_{n,ã} from the Fourier series S_{n,a}.
- In Step 2, we constructed the Gaussian tree model $\widetilde{S}_{n,\widetilde{g}}$ coupled to $\widetilde{S}_{n,\widetilde{a}}$.
- Actually, Step 1 is "invertible": we can construct a Gaussian Fourier series $S_{n,g}$ from the tree model such that the associated chaoses are mutually a.c.

- In Step 1, we constructed the tree model S_{n,ã} from the Fourier series S_{n,a}.
- In Step 2, we constructed the Gaussian tree model $\tilde{S}_{n,\tilde{g}}$ coupled to $\tilde{S}_{n,\tilde{a}}$.
- Actually, Step 1 is "invertible": we can construct a Gaussian Fourier series $S_{n,g}$ from the tree model such that the associated chaoses are mutually a.c.

 $\begin{array}{ccc} \mu_{\gamma,a} & \mu_{\gamma,g} & (\text{chaoses from Fourier series}) \\ & & & \uparrow \\ & & & \downarrow \\ & & \\ \widetilde{\mu}_{\gamma,\widetilde{a}} & \xleftarrow{?}{} & & \\ & & & \\ \end{array} \quad (\text{chaoses from tree models}) \end{array}$

Recall the chaos measure

$$\widetilde{\mu}_{\gamma,\widetilde{a}}(A) := \lim_{n \to \infty} \int_{A} \frac{e^{\gamma \widetilde{S}_{n,\widetilde{a}}(x)}}{\mathbb{E}[e^{\gamma \widetilde{S}_{n,\widetilde{a}}(x)}]} \, \mathrm{d}x \, .$$

Recall the chaos measure

$$\widetilde{\mu}_{\gamma,\widetilde{a}}(A) := \lim_{n \to \infty} \int_{A} \frac{e^{\gamma \widetilde{S}_{n,\widetilde{a}}(x)}}{\mathbb{E}[e^{\gamma \widetilde{S}_{n,\widetilde{a}}(x)}]} \, \mathrm{d}x \, .$$

• The obvious candidate for the R-N derivative between $\widetilde{\mu}_{\gamma,\widetilde{a}}$ and $\widetilde{\mu}_{\gamma,\widetilde{g}}(A)$ is

Recall the chaos measure

$$\widetilde{\mu}_{\gamma,\widetilde{a}}(A) := \lim_{n \to \infty} \int_{A} \frac{e^{\gamma \widetilde{S}_{n,\widetilde{a}}(x)}}{\mathbb{E}[e^{\gamma \widetilde{S}_{n,\widetilde{a}}(x)}]} \, \mathrm{d}x \, .$$

• The obvious candidate for the R-N derivative between $\widetilde{\mu}_{\gamma,\widetilde{a}}$ and $\widetilde{\mu}_{\gamma,\widetilde{g}}(A)$ is

$$R_{\infty,\gamma}(x) := \lim_{n \to \infty} R_{n,\gamma}(x), \quad R_{n,\gamma}(x) := e^{\gamma(\widetilde{S}_{n,\widetilde{a}}(x) - \widetilde{S}_{n,\widetilde{g}}(x))} \frac{\mathbb{E}[e^{\gamma \widetilde{S}_{n,\widetilde{g}}(x)}]}{\mathbb{E}[e^{\gamma \widetilde{S}_{n,\widetilde{a}}(x)}]}$$

Recall the chaos measure

$$\widetilde{\mu}_{\gamma,\widetilde{a}}(A) := \lim_{n \to \infty} \int_{A} \frac{e^{\gamma \widetilde{S}_{n,\widetilde{a}}(x)}}{\mathbb{E}[e^{\gamma \widetilde{S}_{n,\widetilde{a}}(x)}]} \, \mathrm{d}x \, .$$

• The obvious candidate for the R-N derivative between $\widetilde{\mu}_{\gamma,\widetilde{a}}$ and $\widetilde{\mu}_{\gamma,\widetilde{g}}(A)$ is

$$R_{\infty,\gamma}(x) := \lim_{n \to \infty} R_{n,\gamma}(x), \quad R_{n,\gamma}(x) := e^{\gamma(\widetilde{S}_{n,\widetilde{a}}(x) - \widetilde{S}_{n,\widetilde{g}}(x))} \frac{\mathbb{E}[e^{\gamma\widetilde{S}_{n,\widetilde{g}}(x)}]}{\mathbb{E}[e^{\gamma\widetilde{S}_{n,\widetilde{a}}(x)}]}$$

Recall the chaos measure

$$\widetilde{\mu}_{\gamma,\widetilde{a}}(A) := \lim_{n \to \infty} \int_{A} \frac{e^{\gamma \widetilde{S}_{n,\widetilde{a}}(x)}}{\mathbb{E}[e^{\gamma \widetilde{S}_{n,\widetilde{a}}(x)}]} \, \mathrm{d}x \, .$$

• The obvious candidate for the R-N derivative between $\widetilde{\mu}_{\gamma,\widetilde{a}}$ and $\widetilde{\mu}_{\gamma,\widetilde{g}}(A)$ is

$$R_{\infty,\gamma}(x) := \lim_{n \to \infty} R_{n,\gamma}(x), \quad R_{n,\gamma}(x) := e^{\gamma(\widetilde{S}_{n,\widetilde{a}}(x) - \widetilde{S}_{n,\widetilde{g}}(x))} \frac{\mathbb{E}[e^{\gamma \widetilde{S}_{n,\widetilde{g}}(x)}]}{\mathbb{E}[e^{\gamma \widetilde{S}_{n,\widetilde{a}}(x)}]}$$

Need to show:

1. $R_{\infty,\gamma}(x)$ exists for $\widetilde{\mu}_{\gamma,\widetilde{a}}$ and $\widetilde{\mu}_{\gamma,\widetilde{g}}$ -almost every $x \in [0,1]$.

Recall the chaos measure

$$\widetilde{\mu}_{\gamma,\widetilde{a}}(A) := \lim_{n \to \infty} \int_{A} \frac{e^{\gamma \widetilde{S}_{n,\widetilde{a}}(x)}}{\mathbb{E}[e^{\gamma \widetilde{S}_{n,\widetilde{a}}(x)}]} \, \mathrm{d}x \, .$$

• The obvious candidate for the R-N derivative between $\widetilde{\mu}_{\gamma,\widetilde{a}}$ and $\widetilde{\mu}_{\gamma,\widetilde{g}}(A)$ is

$$R_{\infty,\gamma}(x) := \lim_{n \to \infty} R_{n,\gamma}(x), \quad R_{n,\gamma}(x) := e^{\gamma(\widetilde{S}_{n,\widetilde{a}}(x) - \widetilde{S}_{n,\widetilde{g}}(x))} \frac{\mathbb{E}[e^{\gamma \widetilde{S}_{n,\widetilde{g}}(x)}]}{\mathbb{E}[e^{\gamma \widetilde{S}_{n,\widetilde{a}}(x)}]}$$

- 1. $R_{\infty,\gamma}(x)$ exists for $\widetilde{\mu}_{\gamma,\widetilde{a}}$ and $\widetilde{\mu}_{\gamma,\widetilde{g}}$ -almost every $x \in [0,1]$.
- 2. $\lim_{n\to\infty} \int_A R_{n,\gamma}(x) d\mu_{\gamma,\tilde{a}} = \widetilde{\mu}_{\gamma,\tilde{g}}(A)$

Recall the chaos measure

$$\widetilde{\mu}_{\gamma,\widetilde{a}}(A) := \lim_{n \to \infty} \int_{A} \frac{e^{\gamma \widetilde{S}_{n,\widetilde{a}}(x)}}{\mathbb{E}[e^{\gamma \widetilde{S}_{n,\widetilde{a}}(x)}]} \, \mathrm{d}x \, .$$

• The obvious candidate for the R-N derivative between $\widetilde{\mu}_{\gamma,\widetilde{a}}$ and $\widetilde{\mu}_{\gamma,\widetilde{g}}(A)$ is

$$R_{\infty,\gamma}(x) := \lim_{n \to \infty} R_{n,\gamma}(x), \quad R_{n,\gamma}(x) := e^{\gamma(\widetilde{S}_{n,\widetilde{a}}(x) - \widetilde{S}_{n,\widetilde{g}}(x))} \frac{\mathbb{E}[e^{\gamma \widetilde{S}_{n,\widetilde{g}}(x)}]}{\mathbb{E}[e^{\gamma \widetilde{S}_{n,\widetilde{a}}(x)}]}$$

- 1. $R_{\infty,\gamma}(x)$ exists for $\widetilde{\mu}_{\gamma,\widetilde{a}}$ and $\widetilde{\mu}_{\gamma,\widetilde{g}}$ -almost every $x \in [0,1]$.
- 2. $\lim_{n\to\infty} \int_A R_{n,\gamma}(x) d\mu_{\gamma,\widetilde{a}} = \widetilde{\mu}_{\gamma,\widetilde{g}}(A)$
- 3. $(R_{n,\gamma}(x))_{n\in\mathbb{N}}$ is uniformly integrable w.r.t. $\widetilde{\mu}_{\gamma,\widetilde{a}}$.

Recall the chaos measure

$$\widetilde{\mu}_{\gamma,\widetilde{a}}(A) := \lim_{n \to \infty} \int_{A} \frac{e^{\gamma \widetilde{S}_{n,\widetilde{a}}(x)}}{\mathbb{E}[e^{\gamma \widetilde{S}_{n,\widetilde{a}}(x)}]} \, \mathrm{d}x \, .$$

• The obvious candidate for the R-N derivative between $\widetilde{\mu}_{\gamma,\widetilde{a}}$ and $\widetilde{\mu}_{\gamma,\widetilde{g}}(A)$ is

$$R_{\infty,\gamma}(x) := \lim_{n \to \infty} R_{n,\gamma}(x), \quad R_{n,\gamma}(x) := e^{\gamma(\widetilde{S}_{n,\widetilde{a}}(x) - \widetilde{S}_{n,\widetilde{g}}(x))} \frac{\mathbb{E}[e^{\gamma \widetilde{S}_{n,\widetilde{g}}(x)}]}{\mathbb{E}[e^{\gamma \widetilde{S}_{n,\widetilde{a}}(x)}]}$$

- 1. $R_{\infty,\gamma}(x)$ exists for $\widetilde{\mu}_{\gamma,\widetilde{a}}$ and $\widetilde{\mu}_{\gamma,\widetilde{g}}$ -almost every $x \in [0,1]$.
- 2. $\lim_{n\to\infty} \int_A R_{n,\gamma}(x) d\mu_{\gamma,\widetilde{a}} = \widetilde{\mu}_{\gamma,\widetilde{g}}(A)$
- 3. $(R_{n,\gamma}(x))_{n\in\mathbb{N}}$ is uniformly integrable w.r.t. $\widetilde{\mu}_{\gamma,\widetilde{a}}$.
 - + Same statements, switching \widetilde{a} and \widetilde{g} .
Step 3: Radon-Nikodym derivative between tree models

Recall the chaos measure

$$\widetilde{\mu}_{\gamma,\widetilde{a}}(A) := \lim_{n \to \infty} \int_{A} \frac{e^{\gamma \widetilde{S}_{n,\widetilde{a}}(x)}}{\mathbb{E}[e^{\gamma \widetilde{S}_{n,\widetilde{a}}(x)}]} \, \mathrm{d}x \, .$$

• The obvious candidate for the R-N derivative between $\widetilde{\mu}_{\gamma,\widetilde{a}}$ and $\widetilde{\mu}_{\gamma,\widetilde{g}}(A)$ is

$$R_{\infty,\gamma}(x) := \lim_{n \to \infty} R_{n,\gamma}(x), \quad R_{n,\gamma}(x) := e^{\gamma(\widetilde{S}_{n,\widetilde{a}}(x) - \widetilde{S}_{n,\widetilde{g}}(x))} \frac{\mathbb{E}[e^{\gamma \widetilde{S}_{n,\widetilde{g}}(x)}]}{\mathbb{E}[e^{\gamma \widetilde{S}_{n,\widetilde{a}}(x)}]}$$

Need to show:

- 1. $R_{\infty,\gamma}(x)$ exists for $\widetilde{\mu}_{\gamma,\widetilde{a}}$ and $\widetilde{\mu}_{\gamma,\widetilde{g}}$ -almost every $x \in [0,1]$.
- 2. $\lim_{n\to\infty} \int_A R_{n,\gamma}(x) d\mu_{\gamma,\widetilde{a}} = \widetilde{\mu}_{\gamma,\widetilde{g}}(A)$
- 3. $(R_{n,\gamma}(x))_{n\in\mathbb{N}}$ is uniformly integrable w.r.t. $\widetilde{\mu}_{\gamma,\widetilde{a}}$.
 - $+\,$ Same statements, switching \widetilde{a} and $\widetilde{g}.$
 - $\,+\,$ Items 2 and 3 form the most technical part of paper.

Future Work

Future Work

1.
$$\gamma \leq 1 \ (\gamma \leq \sqrt{d})$$
?

• Strangely, our result excludes the L^2 -regime (and $\gamma = 1$).

- Strangely, our result excludes the L^2 -regime (and $\gamma = 1$).
- The issue occurs **only** in the coupling step.

- Strangely, our result excludes the L²-regime (and $\gamma = 1$).
- The issue occurs **only** in the coupling step.
- Our strategy: couple direct descendants of all thick points in N_n in L[∞]-norm using Yurinskii's coupling.

- Strangely, our result excludes the L²-regime (and $\gamma = 1$).
- The issue occurs **only** in the coupling step.
- Our strategy: couple direct descendants of all thick points in N_n in L[∞]-norm using Yurinskii's coupling.
- L^{∞} -norm was **optimal** for Yurinskii's coupling

- Strangely, our result excludes the L²-regime (and $\gamma = 1$).
- The issue occurs **only** in the coupling step.
- Our strategy: couple direct descendants of all thick points in N_n in L[∞]-norm using Yurinskii's coupling.
- L[∞]-norm was **optimal** for Yurinskii's coupling
- (Cattaneo-Masini-Underwood '22): error in Yurinskii's coupling improves if $\mathbb{E}[(a_1^{(1)})^3] = 0$. Examining their proof seems to show the error continues to improve if more moments match Gaussian's.

2. Critical chaos $\gamma = \sqrt{2d}$?

- 2. Critical chaos $\gamma = \sqrt{2d}$?
- Actually, the critical chaos hasn't been constructed yet for the random Fourier series/wave model.

- 2. Critical chaos $\gamma = \sqrt{2d}$?
- Actually, the critical chaos hasn't been constructed yet for the random Fourier series/wave model.
- The difference will come only in Step 3, as the number of thick points decreases as γ increases.

- 2. Critical chaos $\gamma = \sqrt{2d}$?
- Actually, the critical chaos hasn't been constructed yet for the random Fourier series/wave model.
- The difference will come only in Step 3, as the number of thick points decreases as γ increases.
- **3.** Properties of $R_{\infty,\gamma}$?

- 2. Critical chaos $\gamma = \sqrt{2d}$?
- Actually, the critical chaos hasn't been constructed yet for the random Fourier series/wave model.
- The difference will come only in Step 3, as the number of thick points decreases as γ increases.
- **3.** Properties of $R_{\infty,\gamma}$?
- $\sup_{x \in [0,1]} R_{\infty,\gamma}(x)$ is not a.s. finite.

Theorem (K.-Kriechbaum, arXiv:2410.19979)

Take $\gamma \in (1, \sqrt{2})$. The log-correlated random Fourier series with general coefficients can be coupled with a Gaussian Fourier series such that the associated multiplicative chaos measures are mutually absolutely continuous, a.s.

Future work.

- 1. $\gamma \leq \sqrt{d}$?
- 2. Critical chaos $\gamma = \sqrt{2d}$?
- 3. Properties of $R_{\infty,\gamma}$?

Tack!