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Abstract
We study the low-temperature (2 + 1)D solid-on-solid model on �1, 𝐿�2 with zero boundary conditions and
nonnegative heights (a floor at height 0). Caputo et al. (2016) established that this random surface typically admits
either 𝔥 or 𝔥 + 1 many nested macroscopic level line loops {L𝑖}𝑖≥0 for an explicit 𝔥 � log 𝐿, and its top loop L0
has cube-root fluctuations: For example, if 𝜌(𝑥) is the vertical displacement of L0 from the bottom boundary point
(𝑥, 0), then max 𝜌(𝑥) = 𝐿1/3+𝑜 (1) over 𝑥 ∈ 𝐼0 := 𝐿/2+�−𝐿2/3, 𝐿2/3�. It is believed that rescaling 𝜌 by 𝐿1/3 and 𝐼0
by 𝐿2/3 would yield a limit law of a diffusion on [−1, 1]. However, no nontrivial lower bound was known on 𝜌(𝑥)
for a fixed 𝑥 ∈ 𝐼0 (e.g., 𝑥 = 𝐿

2 ), let alone on min 𝜌(𝑥) in 𝐼0, to complement the bound on max 𝜌(𝑥). Here, we show
a lower bound of the predicted order 𝐿1/3: For every 𝜖 > 0, there exists 𝛿 > 0 such that min𝑥∈𝐼0 𝜌(𝑥) ≥ 𝛿𝐿1/3 with
probability at least 1− 𝜖 . The proof relies on the Ornstein–Zernike machinery due to Campanino–Ioffe–Velenik and
a result of Ioffe, Shlosman and Toninelli (2015) that rules out pinning in Ising polymers with modified interactions
along the boundary. En route, we refine the latter result into a Brownian excursion limit law, which may be of
independent interest. We further show that in a 𝐾𝐿2/3 × 𝐾𝐿2/3 box with boundary conditions 𝔥 − 1, 𝔥, 𝔥, 𝔥 (i.e.,
𝔥 − 1 on the bottom side and 𝔥 elsewhere), the limit of 𝜌(𝑥) as 𝐾, 𝐿 →∞ is a Ferrari–Spohn diffusion.
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1. Introduction

We consider the solid-on-solid (SOS) model on Λ𝐿 = �1, 𝐿�2, an 𝐿 × 𝐿 square in Z2, at large inverse-
temperature 𝛽 > 0, with zero boundary conditions and a floor at height 0: Denoting by x ∼ y a pair
of adjacent sites x, y ∈ Z2, and setting 𝜑x = 0 for all x ∉ Λ𝐿 , the model assigns a height function
𝜑 : Λ𝐿 → Z≥0 (taking nonnegative integer heights) the probability

𝜋0
Λ𝐿
(𝜑) ∝ exp

(
− 𝛽

∑
x∼y

|𝜑x − 𝜑y |
)
. (1.1)

The model was introduced in the early 1950s (see [5, 39]) to approximate the formation of crystals and
the interface separating the plus and minus phases in the low-temperature three-dimensional (3D) Ising
model.

While of interest in any dimension d, the study of the model on Z2 has special importance, as it is
the only dimension associated with the roughening phase transition. For the low-temperature 3D Ising
model, which the (2+ 1)D SOS model approximates for large 𝛽, rigorously establishing the roughening
phase transition is a tantalizing open problem which has seen very little progress since being observed
some 50 years ago (numerical experiments suggest it takes place at 𝛽r ≈ 0.408, compared to the critical
3D Ising temperature 𝛽𝑐 ≈ 0.221). The corresponding phase transition for the (2 + 1)D SOS with no
floor �̂� (where 𝜑 can be negative) was rigorously confirmed as follows: (i) (Localization) for 𝛽 large
enough, the surface is rigid, in that Var(𝜑x) = 𝑂 (1) at x in the bulk, and furthermore |𝜑x | has an
exponential tail [3]; (ii) (Delocalization) for 𝛽 small enough, Fröhlich and Spencer [26, 27] famously
showed that Var(𝜑x) � log 𝐿, just as in the case where 𝜑 takes values in R. (iii) Very recently, Lammers
[37] showed the phase transition in Var(𝜑x) is sharp: There exists 𝛽r > 0 such that Var(𝜑x) → ∞ for
all 𝛽 ≤ 𝛽r whereas it is 𝑂 (1) for all 𝛽 > 𝛽r; numerical experiments suggest that 𝛽r ≈ 0.806. (See [37]
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for additional details on the recent developments in the SOS model with no floor and related models of
integer-valued height functions.)

Our setting is the low-temperature regime (𝛽 large), yet with the restriction that the surface must
lie above above a hard wall (the assumption 𝜑 ≥ 0). Bricmont, El-Mellouki and Fröhlich [4] showed
that this induces entropic repulsion, regarded as a key feature of the physics of random surfaces: The
restriction 𝜑 ≥ 0 propels the surface (despite the energy cost) so as to gain entropy. Namely, it was
shown in [4] that 𝑐

𝛽 log 𝐿 ≤ E[𝜑x | 𝜑 ≥ 0] ≤ 𝐶
𝛽 log 𝐿 for absolute constants 𝑐, 𝐶 > 0.

The gap between these bounds was closed in [13], where it was established that E[𝜑x | 𝜑 ≥ 0] is
1

4𝛽 log 𝐿 +𝑂 (1), and moreover, (1− 𝜖𝛽)𝐿2 sites are at such a height with high probability (w.h.p.). The
following intuition explains the height asymptotics: If the surface lies rigid about height h, then the cost
of raising every site by 1 is 4𝛽𝐿 (incurred at the sites along the boundary); the benefit in doing so would
be to gain the ability to feature spikes of depth ℎ + 1 (forbidden at level h due to the restriction 𝜑 ≥ 0),
and as such a spike has an energetic cost of about 𝑒−4𝛽ℎ , the entropy gain is about H(𝑒−4𝛽ℎ)𝐿2, where
H(·) is the Shannon entropy; the two terms are equated at ℎ ∼ 1

4𝛽 log 𝐿.
Significant progress in the understanding of the shape of the SOS surface above a hard wall was

obtained in the sequel by the same authors [14]. The height-h level lines of the surface are the loops
formed by placing dual bonds between every pair x ∼ y such that 𝜑x < ℎ and 𝜑y ≥ ℎ. To account for
local thermal fluctuations, call a loop macroscopic if its length is at least (log 𝐿)2. With this notation,
(a more detailed version of) the following theorem was given in [14] (see also [12]):

Theorem [14, Thms. 1,2,3 and Rem. 1.3]. For 𝛽 large enough, the (2 + 1)D SOS model with zero
boundary conditions on a square Λ𝐿 = �1, 𝐿�2 above the wall 𝜑 ≥ 0, satisfies the following w.h.p.:

(i) Shape: At least (1 − 𝜖𝛽)𝐿2 of the sites x ∈ Λ𝐿 have height 𝜑x = 𝔥★, where the random 𝔥★ is
either  1

4𝛽 log 𝐿� or  1
4𝛽 log 𝐿� − 1. Moreover, there is a unique macroscopic loop at each height

0, 1, . . . , 𝔥★ and none above height 𝔥★. Further, for a diverging sequence1 of L’s, the sequence
of nested loops L0 ⊂ L1 ⊂ . . ., when rescaled to [0, 1]2, converges in probability in Hausdorff
distance to a deterministic limit defined by a Wulff shape W , which is the convex body of area 1
minimizing the line integral of a surface tension 𝜏𝛽 (·) along its perimeter 𝜕W; the scaling limit of
L𝑘 (where L0 is the top level line at height 𝔥★) is given by the union of all possible translates of W ,
rescaled by an explicit radius 𝑟𝑘 that is decreasing in k.

(ii) Fluctuations: For a diverging sequence2 of L’s, the maximum displacement of the top level line L0
from the boundary segment 𝐼 × {0} for 𝐼 = �𝜖𝛽𝐿, (1 − 𝜖𝛽)𝐿� is 𝐿1/3+𝑜 (1) . That is, if

𝜌(𝑥) = max{𝑦 ≤ 𝐿/2 : (𝑥, 𝑦) ∈ L0}

is the maximum y-coordinate of a point (𝑥, 𝑦) visited by L0 in the bottom-half of Λ𝐿 , then

max
𝑥∈𝐼

𝜌(𝑥) ≤ 𝐿1/3+𝜖 , (1.2)

for any fixed 𝜖 > 0, whereas for every interval 𝐼 ′ ⊂ 𝐼 of length 𝐿2/3−𝜖 ,

max
𝑥∈𝐼 ′

𝜌(𝑥) ≥ 𝐿1/3−𝜖 . (1.3)

Consider the distance of the top level line loop L0 from a point (𝑥0, 0) on the bottom boundary of the
box, where the scaling limit is flat – for example, the center side 𝑥0 = 𝐿/2 (see Figure 1 for a depiction).
The above theorem shows that 𝜌(𝑥0) ≤ 𝐿1/3+𝜖 w.h.p., yet it gives no nontrivial lower bound on it. It is
believed that 𝜌(𝑥0) should have order 𝐿1/3 (with no poly-log corrections); more precisely, one expects
𝜌(𝑥0) �P 𝐿1/3, where we write 𝑓 �P 𝑔 if 𝑓 /𝑔 is uniformly tight, and 𝑓 �P 𝑔 if 𝑓 �P 𝑔 �P 𝑓 .

1Namely, for any sequence of L’s where 𝑎𝐿 , the fractional part of 1
4𝛽 log 𝐿, does not converge to an explicit 𝜆𝑐 (𝛽) .

2Namely, for any sequence of L’s such that, for the above 𝑎𝐿’s and 𝜆𝑐 (𝛽) , one has lim inf𝐿→∞ 𝑎𝐿 > 𝜆𝑐 .
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Figure 1. Fluctuations of the SOS level lines about the flat portions of their scaling limits. Maximal
fluctuation is known to be at most 𝐿1/3+𝜖 w.h.p., and it is believed that the distance of the top level line
from a given boundary point (e.g., the center side) is of order 𝐿1/3.

Moreover, one expects that if one were to rescale 𝜌(𝑥) by 𝐿1/3 along an interval of order 𝐿2/3

positioned on bottom boundary (within the flat portion of the scaling limit) – take, for example,

𝐼0 := � 𝐿
2 − 𝐿

2/3, 𝐿2 + 𝐿
2/3�

for concreteness – then, after rescaling said interval by 𝐿2/3 (in the concrete example, to [−1, 1]), one
would arrive at a limit law of a nontrivial diffusion, a variant of a Ferrari–Spohn diffusion [25]. (This
prediction was stated here in terms of 𝜌(𝑥), the maximal vertical displacement of L0, so as to be well-
defined, as L0 can have many points with a given x-coordinate; the same statement is expected to hold
for 𝜌(𝑥) measuring the minimal displacement of L0, as defined in Theorem 1.1.)

To explain this prediction, note first that it is well known that the law of a Brownian excursion on
[−𝑁, 𝑁] tilted (penalized) by exp(−𝜆𝐴), where A is the area under it, tends as 𝑁 → ∞ to that of a
Ferrari–Spohn diffusion. The entropic repulsion that propels the SOS level line loop L to height h acts
much like an area tilt: If a loop has internal area S, then its probability (roughly) gains a tilt of exp(𝜆S)
for 𝜆 = H(𝑒−4𝛽ℎ) as described earlier, or equivalently, a tilt of exp(−𝜆𝐴), where 𝐴 = 𝐿2 − S is the
area exterior to it. Consider L𝑘 , which is at height 𝔥★ − 𝑘: There 𝜆 ≈ 𝑒−4𝛽 (𝔥★−𝑘) ≈ 𝐿−1𝑒4𝛽𝑘 (recall
𝔥★ ≈ 1

4𝛽 log 𝐿), and we see that the rescaling of 𝜌(𝑥) by 𝐿1/3 and 𝐼0 by 𝐿2/3 cancels the 𝐿−1 factor in
𝜆 and translates into a tilt of exp(−𝑒4𝛽𝑘 �̂�), where �̂� is the rescaled area, as in the above continuous
approximation (see also [33, 35]). Related to this, the famous problem of establishing a Ferrari–Spohn
law for the two-dimensional (2D) Ising interface under critical prewetting (which may be seen as a
version of the SOS problem only with a single contour as opposed to 𝑐 log 𝐿 many) was finally settled in
a recent seminal work by Ioffe, Ott, Shlosman and Velenik [30] (prior to that, the 𝐿1/3+𝑜 (1) fluctuations
were established by Velenik [40] and the tightness of the rescaled area was proved by Ganguly and
Gheissari [28]). The challenges in handling a diverging number of interacting (noncrossing) contours
with distinct area tilts (the k-th one is tilted by ≈ exp(−𝑒4𝛽𝑘 �̂�)) are such that the simplified problem that
has Brownian excursions with area tilts is already nontrivial; see [9, 10, 11, 16] for recent progress on it.

In accordance with this prediction for the scaling limit of 𝐿−1/3𝜌(𝑥) along 𝐼0, one expects that both
max𝑥∈𝐼0 𝜌(𝑥) and min𝑥∈𝐼0 𝜌(𝑥) would be of the same order as our rescaling factor 𝐿1/3; that is, to be
precise, that max 𝜌(𝑥) �P 𝐿1/3 and that min 𝜌(𝑥) �P 𝐿1/3. Our main result is the latter part (readily
implying 𝜌(𝑥0) �P 𝐿1/3 at any given 𝜖𝛽𝐿 ≤ 𝑥0 ≤ (1 − 𝜖𝛽)𝐿, for example, the center side 𝑥0 = 𝐿/2).

Theorem 1.1. Fix 𝛽 large, and consider the (2 + 1)D SOS model with zero boundary conditions on
Λ𝐿 = �1, 𝐿�2 as per Equation (1.1) above a wall 𝜑 ≥ 0. Let L0 be the (w.h.p. unique) top macroscopic
level line, consider the interval 𝐼0 = � 𝐿

2 − 𝐿
2/3, 𝐿2 + 𝐿

2/3� centered on the bottom boundary and let

𝜌(𝑥) = min{𝑦 ≥ 0 : (𝑥, 𝑦) ∈ L0}
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denote the minimum vertical displacement of L0 from the bottom boundary at the coordinate x. Then
for every 𝜖 > 0 there exists 𝛿 > 0 such that for large enough L, with probability at least 1 − 𝜖 ,

min
𝑥∈𝐼0

𝜌(𝑥) ≥ 𝛿 𝐿1/3. (1.4)

As we later explain, we obtain Equation (1.4) by moving from 𝜌(𝑥), at a constant probability cost,
to a curve whose limit (after the same rescaling) is a Brownian excursion, yielding the 𝐿1/3 bound.
This refines the lower bound in Equation (1.3) into the estimate max𝑥∈𝐼0 𝜌(𝑥) ≥ min𝑥∈𝐼0 𝜌(𝑥) �P 𝐿1/3.
Note though that one cannot replace the 𝐿1/3+𝑜 (1) in the upper bound of Equation (1.2) by 𝑂 (𝐿1/3),
as it addresses max 𝜌(𝑥) over all 𝐼 = �𝜖𝛽𝐿, (1 − 𝜖𝛽)𝐿�. Our comparison to a Brownian excursion
implies that max𝑥∈𝐼 𝜌(𝑥) ≥ 𝑐𝐿1/3√log 𝐿 w.h.p.; as we later explain, Theorem 1.3 will imply that
max𝑥∈𝐼 𝜌(𝑥) �P 𝐿1/3(log 𝐿)2/3, its predicted order (see Remark 1.6 as well as Question 1.7).

To derive the Brownian excursion law, we rely on the powerful Ornstein–Zernike framework as
developed by Campanino, Ioffe and Velenik [29, 6, 7, 8], that allows one to couple the interface in hand
to a directed random walk. This machinery was the key to several recent advances in the understanding
2D Ising interfaces (e.g., [30] mentioned earlier) and Potts interfaces (e.g., [38, 31]). In fact, the work
[31], due to Ioffe, Ott, Velenik and Wachtel, is of particular interest in our setting: There it was shown
that the interface of the 2D Potts model in a box with Dobrushin’s boundary conditions has the scaling
limit of a Brownian excursion for all 𝛽 > 𝛽𝑐 . As in our case, one of the main obstacles is the interaction
of the interface with the boundary and, in particular, ruling out the scenario whereby the interface is
pinned to the wall. This was achieved for the Potts interface in [31] (and later used as an ingredient
in [30]) via a direct analysis of its random cluster counterpart and then combined with a version of
Ornstein–Zernike theory tailored to that model.

Here, we instead appeal to the framework of Ioffe, Shlosman and Toninelli [32] to rule out pinning.
That approach, while valid only for large enough 𝛽 (whereas the analysis in [30] holds for all 𝛽 > 𝛽𝑐),
is fairly generic and applicable to SOS contours as part of the following family of Ising polymers (to
aid the exposition, we describe it briefly here, deferring its full definition to Sections 2.2 and 2.3). Call
a path 𝛾 of distinct adjacent edges in (Z2)∗ = Z2 + ( 1

2 ,
1
2 ) (vertices may repeat according to a splitting

rule) a polymer, or contour, if it connects the origin o∗ = ( 1
2 ,

1
2 ) to a marked x𝑁 at distance N from o∗

while staying in a half-plane H�𝑛. The model gives 𝛾 a probability proportional to

𝑞(𝛾) := exp
(
− 𝛽 |𝛾 | +

∑
C

Φ(C; 𝛾)
)
,

where the sum goes over every finite connected subset C in Z2 that intersects Δ𝛾 , the vertex boundary
of 𝛾, and the potential function Φ satisfies the following properties: ( P1) Φ(C; ·) is local, in the sense
that it only depends on 𝛾 through C ∩ Δ𝛾; ( P2) sup𝛾 |Φ(C, 𝛾) | decays exponentially in the size of C
(more precisely, in the minimum size of a graph connecting its boundary edges), and ( P3) Φ is invariant
under translations of the form (C, 𝛾) ↦→ (C + v, 𝛾 + v). The final requirement in [32] is to have that ( P4)
the surface tension is symmetric: If one defines the surface tension as

𝜏𝛽 (�𝑛) := − lim
𝑁→∞

1
𝑁

log
( ∑

𝛾

𝑞(𝛾)
)
,

then the function �𝑛 ↦→ 𝜏𝛽 (�𝑛) should have all discrete symmetries of Z2. Under these conditions, the main
result of [32] was that modifying the potential function Φ into Φ′ along 𝜕H�𝑛 does not affect the surface
tension. That is, if we let Φ′(C, 𝛾) = Φ(C, 𝛾) whenever C is fully contained in H�𝑛 and the modified
Φ′ still obeys the decay condition in Property (P2), then the modified 𝜏′𝛽 agrees with the original 𝜏𝛽 .
Moreover, the corresponding partition functions are comparable (see Theorem 5.1).

The main ingredient in our proof of Theorem 1.1 is the following result, which establishes a Brownian
excursion limit law for (a) Ising polymers as defined by [32] in the positive half-plane H and (b) Ising
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polymers in a box of side length N. Our proof of Part (a) hinges on the ‘no pinning’ main result of
[32] (mentioned above) en route to refining its conclusion and deriving the limit law. Part (b), proved
similarly, may be viewed as an analogue of [31] for any Ising polymer at large 𝛽.
Theorem 1.2. Fix 𝛽 large, and consider the family of Ising polymers 𝛾 (see Definitions 2.3 and 2.6) in
a domain D, where the potential function Φ′ is modified along its boundary 𝜕𝐷, and D is either
(a) the positive half-plane H with the marked end points o∗ = ( 1

2 ,
1
2 ) and x𝑁 = ( 1

2 , 𝑁 −
1
2 ); or

(b) a box of side length N whose bottom corners are the same marked end points o∗ and x𝑁 .
There exists 𝜎 > 0 such that, if 𝛾(𝑥) = max{𝑦 : (𝑥, 𝑦) ∈ 𝛾}, then 𝛾(𝑥𝑁�)/(𝜎

√
𝑁) converges weakly

to a standard Brownian excursion on [0, 1], and the same holds for 𝛾(𝑥) = min{𝑦 : (𝑥, 𝑦) ∈ 𝛾}.
In particular, Part (b) applies to the SOS model �̂�0,1,1,1

Λ with no floor on a box Λ of side length N, for
𝛽 > 𝛽0 and boundary conditions 0 on the bottom side and 1 elsewhere: Namely, the height-1 level line
that connects the bottom corners of the box Λ has a scaling limit of a Brownian excursion.

While Theorem 1.2 addressed level lines in the SOS model (and more generally, Ising polymers)
with no floor – whereby the scaling limit is a Brownian excursion – its application for Theorem 1.1
(addressing SOS above a floor) used the fact that in that setting the effect of the floor is uniformly
bounded. Indeed, in an 𝐿2/3 × 𝐿2/3 box centered on the bottom boundary, the tilting effect of the floor
on the top level line (as a Radon–Nikodym derivative) amounts to a factor of exp[𝑐𝐴/𝐿], where A
is the area under the nontilted curve (note 𝐴 �P 𝐿 for a Brownian excursion on an interval of length
𝐿2/3). Since, as mentioned above, a Brownian excursion tilted by an area term is known to converge to
a Ferrari–Spohn diffusion, one expects that the top level line of SOS in that box will actually dominate
a Ferrari–Spohn diffusion. This is the content of Theorem 1.3 below.

We first define the limiting object formally. Let Ai(𝑥) denote the Airy function (of the first kind),
that is, the solution to 𝑦′′(𝑥) = 𝑥𝑦 with the initial condition 𝑦 = 0 at 𝑥 = ∞. For 𝜆, 𝜎 > 0, define
𝑓𝜆,𝜎 (𝑥) := Ai((2𝜆𝜎)1/3𝑥 + 𝜔1), where 𝜔1 is the ‘first’ zero of Ai (𝜔1 < 0 and closest to 0).3 The
stationary Ferrari–Spohn diffusion we consider is the diffusion on (0,∞) with generator

L𝜓 =
1
2
𝜓 ′′ +

𝑓 ′𝜆,𝜎
𝑓𝜆,𝜎

𝜓 ′ (1.5)

and Dirichlet boundary condition at 0.
The following result establishes that if we consider the SOS model on a 𝐾𝐿2/3 × 𝐾𝐿2/3 box with

boundary conditions 𝐻 − 1, 𝐻, 𝐻, 𝐻, where H is the typical height of the top level line (up to 1
integer), then the H-level line will converge weakly to a Ferrari–Spohn diffusion in (𝐶 [−𝑇, 𝑇], ‖ · ‖∞)
for any 𝑇 > 0. A direct consequence (via the monotonicity argument in Section 3) is a refinement of
Theorem 1.1, showing that 𝜌(𝑥) from that theorem essentially dominates a Ferrari–Spohn diffusion
(thus 𝜌(𝑥) �P 𝐿1/3; see Remark 1.5).
Theorem 1.3. Fix 𝛽 large, and consider the SOS model on a 𝐾𝐿2/3 × 𝐾𝐿2/3 box with a floor at 0 and
boundary conditions 𝐻 =  1

4𝛽 log 𝐿� everywhere except the bottom side, where they are 𝐻 −1. Suppose
that 𝑎𝐿 , the fractional part of 1

4𝛽 log 𝐿, converges to a limit, and let 𝜌(𝑥) denote the maximum vertical
distance of the H-level line (connecting the bottom corners of the box) from the bottom side at horizontal
location 𝑥 ∈ R. Let 𝜎 > 0 be the constant from Theorem 1.2, Part (b). Then there exists 𝜆 > 0 such that
𝜌(𝑥𝐿2/3�)/(𝜎𝐿1/3) converges weakly as 𝐿 →∞ followed by 𝐾 →∞ to the stationary Ferrari–Spohn
diffusion on (0,∞) with generator L and Dirichlet boundary condition at 0. The same holds for 𝜌(𝑥),
the minimum height fluctuation of the level line at 𝑥 ∈ R.
Remark 1.4. Using the same methods, a Ferrari–Spohn diffusion limit may also be derived for Ising
polymers with the appropriate area tilt. Furthermore, it is possible to take any diverging sequence of
𝐾 := 𝐾 (𝐿) ∈ (0, 𝐿1/20). See Theorem 7.1 for a more detailed version of Theorem 1.3.

3The function 𝑓𝜆,𝜎 is the first eigenfunction of the operator L; see [33, Eq. (1.18)]
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Remark 1.5. As mentioned above, Theorem 1.2 is proved via coupling the Ising polymer to a 2D
directed random walk excursion. The proof of Theorem 1.3, taking into account the floor in the SOS
model, proceeds by using the same machinery to couple the polymer to a random walk excursionbn yet
this time with an area tilt. We then appeal to the approach of [30, Section 6] for handling the convergence
of such 2D random walks to the Ferrari–Spohn diffusion. As a byproduct of this argument, one can read
off quantitative results on the model before taking 𝐾, 𝐿 → ∞; namely, the top level line of the SOS
model with zero boundary conditions on Λ𝐿 above a wall dominates a random walk excursion with end
points 0 and an area tilt on any interval of length 𝐿2/3 at distance at least 𝜖𝛽𝐿 from the box corners
(a stronger result than Theorem 1.1).

Remark 1.6. Consider the aforementioned stronger version of Theorem 1.1, whereby the vertical
displacement 𝜌(𝑥) of the top level line L0 of the SOS model, along any interval of length 𝐿2/3 bounded
away from the corners, stochastically dominates a random walk with area tilt 𝑒−𝑐𝐴/𝐿 . Standard tools
will then imply that max𝑥∈𝐼 𝜌(𝑥) is Ω(𝐿1/3 (log 𝐿)2/3) for 𝐼 = �𝜖𝛽𝐿, (1 − 𝜖𝛽)𝐿�. Namely, one could
show, for some absolute constant 𝑐 > 0, a lower bound on the upper tail of 𝜌(𝑥0), valid for all 𝑥0 ∈ 𝐼, à
la Tracy–Widom distribution:

𝜋0
Λ𝐿
(𝜌(𝑥0) > 𝑎𝐿1/3) ≥ 𝑒−𝑐𝑎3/2

.

Considering about 𝐿1/3 such 𝑥0 taken in disjoint boxes of length 𝐿2/3 each, along with monotonicity
arguments similar to those employed in Section 3 will then imply max𝑥∈𝐼 𝜌(𝑥) �P 𝐿1/3 (log 𝐿)2/3.

It is plausible that this gives the correct order of the upper tail large deviation rate function, and that
consequently, max𝑥 𝜌(𝑥) �P 𝐿1/3 (log 𝐿)2/3 (see, e.g., [28], where an estimate of this type was obtained
for the 2D Ising interface in critical prewetting, as well the work of Alexander [1] on local roughness of
droplet boundaries in the random cluster model).

Question 1.7. Let 𝑥0 ∈ �𝜖𝛽𝐿, (1 − 𝜖𝛽)𝐿�. What is the rate function 𝑎 ↦→ − log 𝜋0
Λ𝐿
(𝜌(𝑥0) > 𝑎𝐿1/3)?

As for lower tails, to our knowledge these are still open for the 2D Ising under critical prewetting,
where one expects the Ising interface to reach the bottom in 𝑂P(1) locations along �𝜖𝛽𝐿, (1 − 𝜖𝛽)𝐿�.
One should stress though that it is unclear that the SOS large deviations would take after the behavior
of the 2D Ising interface under prewetting – particularly for the lower tails, where in SOS there are
Θ(log 𝐿) level lines below L0, all of which must cooperate with a downward deviation.

Question 1.8. Let 𝑥0 ∈ �𝜖𝛽𝐿, (1 − 𝜖𝛽)𝐿�. What is the order of 𝜋0
Λ𝐿
(𝜌(𝑥0) = 0)?

The paper is organized as follows. In Section 2, we formalize the setting of Ising polymers, as well
as the inputs we need from Ornstein–Zernike theory. We also establish that the SOS model satisfies
the required hypotheses of Ising polymers, and thus Theorem 1.2 is applicable to it. Section 3 proves
Theorem 1.1, addressing the SOS measure 𝜋, using a monotonicity argument and the conclusion of
Theorem 1.2 on �̂�, the SOS measure without a floor. In Section 4, we introduce a random walk in H
that is closely related to Ising polymers and state the key limit theorems for this random walk. In turn,
Section 5 provides the proof of Theorem 1.2 modulo these random walks results that are deferred to
Section 6. In Section 7, we prove Theorem 1.3.

2. Cluster expansion, Ising polymers and Ornstein–Zernike theory

In this section, we review the tools needed for our proofs – notably, cluster expansion, prior work on
Ising polymers and the Ornstein–Zernike theory. In several cases, we will need variants of existing
results, which are not covered by the results proved in the literature. In those cases, we provide proofs
of these analogues (either in the main text or in the appendix).

Throughout the paper, we say that an event holds with high probability (w.h.p.) if its probability
tends to 1 as the system size (typically, L or N) tends to ∞. For two functions 𝑓 : N → (0,∞) and
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𝑔 : N→ (0,∞), write 𝑓 ∼ 𝑔 to denote that lim𝑁→∞ 𝑓 (𝑁)/𝑔(𝑁) = 1; write 𝑓 � 𝑔 when there exists a
constant 𝐾 > 0 such that 𝑓 (𝑁) ≤ 𝐾𝑔(𝑁) for all 𝑁 ∈ N; and write 𝑓 � 𝑔 when 𝑓 � 𝑔 and 𝑔 � 𝑓 .

2.1. Contours and cluster expansion

A contour 𝛾 is a collection of bonds (𝑒𝑖)𝑚𝑖=1 in the dual lattice (Z2)∗, where all bonds are distinct except
possibly 𝑒1 and 𝑒𝑚 may coincide, every two consecutive edges share a vertex, and the path formed is
simple except in accordance with a splitting rule: If the pair 𝑒𝑖 , 𝑒𝑖+1 and 𝑒 𝑗 , 𝑒 𝑗+1 all intersect at a vertex
x, then the two other end points of 𝑒𝑖 , 𝑒𝑖+1 are on the same side of the line through x with slope 1 (from
southwest to northeast) and similarly for 𝑒 𝑗 , 𝑒 𝑗+1 (this is the northeast splitting rule). We call 𝛾 an open
contour if 𝑒1 ≠ 𝑒𝑚.

In the context of the SOS model in a finite, connected Λ � Z2 under 0 boundary conditions, for any h,
the h-level lines (recall that for any configuration 𝜑 and integer h, these are the bonds dual to x ∼ y with
𝜑x < ℎ and 𝜑y ≥ ℎ) give rise to a collection of disjoint loops after applying the global splitting rule.
In the presence of a boundary condition 𝜉 ∈ {0, 1}𝜕Λ consisting of a connected stretch of 0’s (and 1’s
elsewhere), this gives rise to a unique open contour among the height-1 level lines (accompanied by a
collection of closed contours). We refer to this path as the open 1-contour. Let Δ+𝛾 and Δ−

𝛾 denote the
set of sites (of Z2) immediately above and below 𝛾, respectively, and define

Δ𝛾 := Δ+
𝛾 ∪ Δ−

𝛾 .

Note that the sites in Δ+𝛾 have height ≥ 1, while the sites in Δ−𝛾 have height ≤ 0. Each 𝛾 divides Λ into
two regions, Λ+𝛾 and Λ−𝛾 , where we write Λ+𝛾 to denote the region that contains Δ+𝛾 as part of its inner
boundary. The next proposition addresses the law of this unique SOS open contour 𝛾.

Proposition 2.1 [13, Lem. A.2]. Consider the SOS model �̂� 𝜉Λ on any finite, connected Λ ⊂ Z2 and
under any boundary condition 𝜉 ∈ {0, 1}𝜕Λ that induces a unique open 1-contour 𝛾. Then there exists
a constant 𝛽0 > 0 such that for all 𝛽 ≥ 𝛽0,

�̂�
𝜉
Λ (𝛾) ∝ exp

(
− 𝛽 |𝛾 | +

∑
C∩Δ𝛾≠∅

𝜙(C; 𝛾)1{C⊂Λ}
)
, (2.1)

for some ‘decoration functions’ {𝜙(C, 𝛾)}C⊂Z2 satisfying the following properties:

(i) If C is not connected, then 𝜙(C; 𝛾) = 0.
(ii) The decoration function 𝜙(C; ·) depends on 𝛾 only through C ∩ Δ𝛾 .

(iii) For all v ∈ Z2, 𝜙(C; 𝛾) = 𝜙(C + v; 𝛾 + v) .
(iv) Letting 𝑑 (C) denote the cardinality of the smallest connected set of bonds of Z2 containing all

boundary bonds of C (i.e., bonds connecting C to C𝑐), we have the decay bound

sup
𝛾
|𝜙(C; 𝛾) | ≤ exp

(
− (𝛽 − 𝛽0)𝑑 (C)

)
. (2.2)

Furthermore, if 𝑍 𝜉
Λ is the partition function of the SOS model �̂� 𝜉Λ and

G 𝜉
Λ :=

∑
𝛾

𝑒−𝛽 |𝛾 |+
∑

C⊂Λ 𝜙 (C;𝛾)

is the interface partition function corresponding to the distribution Equation (2.1), then

G 𝜉
Λ = 𝑍 𝜉

Λ /𝑍
0
Λ. (2.3)
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The decoration functions come from cluster expansion applied to the partition functions in Λ+𝛾
and Λ−𝛾 . In Appendix A, we recall cluster expansion for the SOS model and provide the proof of
Proposition 2.1, as the expression for the decoration function 𝜙 is needed to verify that it meets the
criteria of modified Ising polymers (Definition 2.6). In light of Property (i), from now on we will write
C to denote a connected subset (or cluster) of Z2.

Next, we recall the notion of surface tension for the SOS model.

Definition 2.2 (Dobrushin boundary conditions, surface tension). Fix �𝑢 ∈ S1 in the first quadrant,
that is, with 𝜃 �𝑢 ∈ [0, 𝜋/2), where 𝜃 �𝑢 is the angle �𝑢 makes with the positive horizontal axis. Set
Λ𝑁 ,𝑀 := �1, 𝑁� × �−𝑀, 𝑀�, and let 𝜉 ( �𝑢) denote the boundary condition defined by 𝜉 ( �𝑢)𝑣 = 0 for
all 𝑣 ∈ 𝜕Λ lying on or below span( �𝑢), and 𝜉 ( �𝑢)𝑣 = 1 otherwise. Our main focus is on the boundary
condition 𝜉 (e1), which we denote by 0, 1, 1, 1 (after the values induced by 𝜉 (e1) on the four sides of the
box �1, 𝑁� × �0, 𝑀�). Define 𝑑𝑁 , �𝑢 := 𝑁/cos(𝜃 �𝑢). The surface tension 𝜏sos

𝛽 ( �𝑢) is defined by

𝜏sos
𝛽 ( �𝑢) := lim

𝑁→∞
lim

𝑀→∞
− 1
𝑑𝑁 , �𝑢

log
(
G 𝜉 ( �𝑢)
Λ𝑁,𝑀

)
. (2.4)

The value of 𝜏sos
𝛽 for the other quadrants is defined symmetrically so that 𝜏sos

𝛽 ( �𝑢) = 𝜏sos
𝛽 (�𝑣) when

𝜃 �𝑢 = −𝜃 �𝑣 or 𝜃 �𝑢 = 𝜋 − 𝜃 �𝑣 .
Finally, 𝜏sos

𝛽 extends to an even function on all of R2 via homogeneity:

𝜏sos
𝛽 (x) := ‖x‖𝜏sos

𝛽

( x
‖x‖

)
, for all x ∈ R2.

The proof of the existence of 𝜏sos
𝛽 (x) as well as many of its properties can be found in [20, §1–2].

2.2. The free Ising polymer model

In this section, we define the class of Ising polymer models, as given by [32].4 The reader is also referred
to [20] for many useful results on such polymer models. It will be shown that the SOS open contour
from Equation (2.1) falls in this class.

Recall that we write C to denote a finite, connected subset of Z2. For every contour 𝛾, consider any
decoration function Φ(C; 𝛾) satisfying the following four properties:

(P1) Locality: Φ(C; ·) depends on 𝛾 only through C ∩ Δ𝛾 .
(P2) Decay: There exists some 𝜒 > 1/2 such that, for all 𝛽 > 0 sufficiently large,

sup
𝛾
|Φ(C, 𝛾) | ≤ exp(−𝜒𝛽(𝑑 (C) + 1)), (2.5)

where 𝑑 (C) is defined as in Property (iv) of Proposition 2.1.
(P3) Translational symmetry: For all v ∈ Z2, Φ(C; 𝛾) = Φ(C + v; 𝛾 + v).
(P4) Symmetry of the surface tension: The surface tension 𝜏𝛽 (x) defined below in Equation (2.8)

possesses all discrete symmetries of Z2 (rotations by 𝜋/4 and reflections w.r.t. axes and the
diagonals 𝑦 = ±𝑥).

Towards specifying the probability that the model assigns to each polymer – as well as the surface
tension 𝜏𝛽 mentioned in Property (P4) – define the free (polymer) weight via

𝑞(𝛾) = exp
(
− 𝛽 |𝛾 | +

∑
C∩Δ𝛾≠∅

Φ(C; 𝛾)
)
, (2.6)

4The Ising polymer model in [32] had a weaker decay condition, taking 𝑑 (C) in Property (P2) to be the 𝐿∞-diameter of C,
whereas our arguments require 𝑑 (C) to be the minimum size of a connected set containing its boundary.
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where, here and throughout the article, sums over C are assumed to only go over connected subsets
C ⊂ Z2. Next, for any x ∈ (Z2)∗, consider the partition function going over all contours 𝛾 with the start
point given by the dual origin o∗ := (1/2, 1/2) and end point x:

G (x) :=
∑

𝛾:o∗→x
𝑞(𝛾).

For any set of contours E, consider also the partition function going over all contours in E with end
points 0 and x:

G (x
�� 𝐸) :=

∑
𝛾:o∗→x

𝑞(𝛾)1{𝛾∈𝐸 } . (2.7)

Lastly, define the Ising polymer surface tension 𝜏𝛽 (·) via5

𝜏𝛽 (�𝑛) := − lim
𝑁→∞

1
𝑁

logG (𝑁 �𝑛) for �𝑛 ∈ S1, (2.8)

where the limit is taken over N such that 𝑁 �𝑛 is in (Z2)∗. By homogeneity, 𝜏𝛽 extends to all of R2.

Definition 2.3 (Free Ising polymer). The free Ising polymer model in a subset 𝐷 ⊂ R2 is given by the
probability measure over contours 𝛾 : o∗ → x contained in D:

Px(·
�� 𝛾 ⊂ 𝐷) :=

G (x
�� 𝛾 ⊂ 𝐷, 𝛾 ∈ ·)

G (x
�� 𝛾 ⊂ 𝐷) , (2.9)

for a partition function G as above with a decoration function Φ satisfying Properties (P1) to (P4).

Below, we list some needed properties of 𝜏𝛽 , proven in [20].

Proposition 2.4 (Surface tension properties, [20]). There exists 𝛽0 > 0 such that for all 𝛽 ≥ 𝛽0:

(i) The formula in Equation (2.8) converges uniformly.
(ii) The surface tension 𝜏𝛽 : R2 → R2 is analytic.

(iii) (Strong triangle inequality) For any two noncollinear vectors u and v in Z2, we have

𝜏𝛽 (u) + 𝜏𝛽 (v) > 𝜏𝛽 (u + v).

Proof. Properties (i) and (ii) follow from the combination of Theorem 4.8 and Proposition 4.12 of [20].6
Lastly, Property (iii) appeared in [20, Proposition 1, Section 4.21]. �

For our main application of Theorem 1.2, the SOS model, the following result relates the surface
tension 𝜏sos

𝛽 defined in Equation (2.4) to the Ising polymer surface tension 𝜏𝛽 defined above. We suspect
it is known, though could not find an exact reference for it, and as it follows from our other arguments
in Section 5, we include its proof in Section 5.3 for completeness.

5It is common to define 𝜏𝛽 with the 1/𝛽 prefactor (such was the case in [20] as well as [14]). We do not include the prefactor
here since related Ornstein–Zernike works (e.g., [34, 30]) do not include this prefactor, and this keeps various definitions (e.g.,
W , 𝑊 h, Phx defined below) consistent with those works. In [32], 𝜏𝛽 does have a 1/𝛽 prefactor, though it seems to be a typo, as
their inputs from the Ornstein–Zernike theory come from the aforementioned [34] (and as such their calculations are consistent
with the above definition of 𝜏𝛽). We will prove the Ornstein–Zernike facts we require here to make the proof more self-contained
and avoid potential consistency issues.

6These results are stated in [20] for the Ising polymer model G (x) . The analogue of G is defined in [20, Eq. 4.3.11] (where
for us, ℎ = 0). Though that formula involves decoration functions Φ coming from the cluster expansion of the Ising model, the
results in [20, Section 4] that follow this formula only use Properties (iii) and (iv) of our Proposition 2.1. This is stated in the final
paragraph of [20, Section 4.3].



Forum of Mathematics, Sigma 11

Proposition 2.5. Fix 𝛽 ≥ 𝛽0. Let 𝑞(𝛾) denote the free polymer weight as per Equation (2.6) withΦ(C; 𝛾)
taken to be 𝜙(C; 𝛾) from Proposition 2.1. Consider the Ising polymer surface tension 𝜏𝛽 corresponding
to the free polymer weights 𝑞(𝛾) as per Equation (2.8). For all u ∈ R2,

𝜏sos
𝛽 (u) = 𝜏𝛽 (u).

Observe that the decoration function 𝜙(C; 𝛾) appearing in the law of the unique open 1-contour under
�̂�
𝜉
Λ satisfies Properties (P1) to (P4). Indeed, Proposition 2.1 states that the decoration function 𝜙(C; 𝛾)

satisfies Properties (P1) to (P3). Property (P4) holds for 𝜏sos
𝛽 because of the symmetry of the SOS model

and thus for 𝜏𝛽 thanks to Proposition 2.5.
However, the open 1-contour in the SOS model is not a free Ising polymer due to the 1{C⊂Λ} term

appearing in Equation (2.1), which introduces an interaction of 𝛾 with the boundary via the decoration
function 𝜙. This served as one of the motivations of [32] to study modified Ising polymers – the
generalization of the free Ising polymers described above to allow domain-induced modifications on the
‘free’ weights (the SOS open contour does belong to that family of models: See Observation 2.7).

2.3. The modified Ising polymer model

For any 𝐷 ⊂ R2 and for any decoration function Φ(C; 𝛾) satisfying Properties (P1) to (P4), consider
any function Φ𝐷 (C; 𝛾) satisfying

(M1) Φ𝐷 (C; 𝛾) = Φ(C; 𝛾) for any C ⊂ 𝐷, and
(M2) Φ𝐷 (C; 𝛾) satisfies the same decay bound in Equation (2.5) for all C.

Call Φ𝐷 (C; 𝛾) a modified decoration function (with modifications outside of D), and define the modified
polymer weight

𝑞𝐷 (𝛾) = exp
(
− 𝛽 |𝛾 | +

∑
C∩Δ𝛾≠∅

Φ𝐷 (C; 𝛾)
)

as well as the partition function

G𝐷 (x) :=
∑

𝛾:o∗→x,𝛾⊂𝐷
𝑞𝐷 (𝛾) and G𝐷 (x

�� 𝐸) :=
∑

𝛾:o∗→x,𝛾⊂𝐷
𝑞𝐷 (𝛾)1{𝛾∈𝐸 } for a set of contours 𝐸.

Definition 2.6 (Modified Ising polymer). The modified Ising polymer in a subset 𝐷 ⊂ R2 is given by
the probability measure on contours 𝛾 : o∗ → x contained in D:

Px
𝐷 (·) :=

G𝐷 (x
�� 𝛾 ∈ ·)

G𝐷 (x)
, (2.10)

where the partition function G𝐷 is defined for a decoration function Φ satisfying Properties (P1) to (P4)
and a modified decoration function Φ𝐷 satisfying Properties (M1) and (M2).

Note that the SOS open contour with law �̂�
𝜉
Λ given by Equation (2.1) is of the form above, with

Φ(C; 𝛾) = 𝜙(C; 𝛾), 𝐷 = Λ, and ΦΛ (C; 𝛾) = 𝜙(C; 𝛾)1{C⊂Λ} for 𝜙(C; 𝛾) from Proposition 2.1 (in which
this choice of Φ𝐷 (C; 𝛾) clearly satisfies Properties (M1) and (M2)). Namely, the following holds:

Observation 2.7 (SOS is a modified Ising polymer). Fix 𝛽 ≥ 𝛽0, and consider the SOS model �̂� 𝜉Λ
in a finite, connected subset Λ ⊂ Z2 and boundary condition 𝜉 ∈ {0, 1}𝜕Λ that induces a unique
open 1-contour 𝛾. Let Λ̄ denote the region in R2 enclosed by 𝜕Λ (i.e., the region enclosed by the
Z2-edges connecting the boundary vertices of Λ). Assume for convenience that the start point of 𝛾 is
o∗, and denote its end point by x. Then 𝛾 has the Ising polymer law Px

Λ̄
defined with decoration weights

Φ(C; 𝛾) := 𝜙(C; 𝛾) and ΦΛ̄(C; 𝛾) := 𝜙(C; 𝛾)1{C⊂Λ}.
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It will be very convenient to view Ising polymers as connected paths in the lattice Z2 rather than
the dual lattice (Z2)∗ via the translation map 𝜄 : o∗ ↦→ 0, and this is the convention we will follow for
the remainder of the article (for clarity, note also that, through this mapping, clusters C will henceforth
denote finite, connected subsets of (Z2)∗ instead of Z2), excluding Section 3.

Let us now restate Theorem 1.2 in the above language, which is the form in which we will prove it
(Section 5.7). For 𝑁 ∈ N, define 𝑄 := [0, 𝑁]2.

Theorem 2.8. Fix 𝛽 > 0 large, take D to be either H or Q and set x := (𝑁, 0). Consider an Ising
polymer 𝛾 ∼ Px

𝐷 (·). There exists 𝜎 > 0 such that, if 𝛾(𝑥) = max{𝑦 : (𝑥, 𝑦) ∈ 𝛾}, then 𝛾(𝑥𝑁�)/(𝜎
√
𝑁)

converges weakly to a standard Brownian excursion in the Skorokhod space (𝐷 [0, 1], ‖ · ‖∞) and the
same holds for 𝛾(𝑥) = min{𝑦 : (𝑥, 𝑦) ∈ 𝛾}.

Remark 2.9. The variance 𝜎2 with 𝜎 as in Theorem 2.8 (and by extension, the one in Theorem 1.2)
is given above Theorem 4.3. It is related to the curvature of the Wulff shape (defined in Section 2.6)
associated to the Ising polymer. See [20, Appendix B] for details.

2.4. Nonnegative decoration functions and a product structure

Following [32, Section 3.1], we employ a construction going back to [21] that allows us to consider
decoration functions which are nonnegative. In this discussion, we allow for the case 𝐷 = R2, in which
case Φ𝐷 (C; 𝛾) = Φ(C; 𝛾) and 𝑞𝐷 (𝛾) = 𝑞(𝛾).

For a contour 𝛾, we consider the set of (not necessarily distinct) bonds in Z2 (recall we have applied
the translation map 𝜄 : o∗ ↦→ 0):

∇𝛾 :=
⋃

𝑏=(y,y+e𝑖 ) ∈𝛾
{𝑏, 𝑏 + e𝑖 , 𝑏 − e𝑖}.

To be clear, b is a bond in 𝛾, e𝑖 denotes a standard basis vector, and 𝑏 ± e𝑖 denotes the bond obtained
by translating b by ±e𝑖 . Thus, ∇𝛾 contains three bonds for each bond of 𝛾. Define

Φ′
𝐷 (C; 𝛾) :=

��C ∩ ∇𝛾

��𝑒−𝜒𝛽 (𝑑 (C)+1) +Φ𝐷 (C; 𝛾),

where |C ∩ ∇𝛾 | is equal to the number of bonds, counted with multiplicity, in ∇𝛾 that C intersects:
��C ∩ ∇𝛾

�� = ∑
𝑏=(y,y+e𝑖 ) ∈𝛾

(1{𝑏∩C≠∅} + 1{𝑏+e𝑖∩C≠∅} + 1{𝑏−e𝑖∩C≠∅}).

Observe that Φ′
𝐷 ≥ 0 by Equation (2.5) and Property (M2). For any fixed bond 𝑏 ∈ Z2, let 𝑐(𝛽) denote

the value of

𝑐(𝛽) :=
∑

C⊂(Z2)∗ , C∩𝑏≠∅
𝑒−𝜒𝛽 (𝑑 (C)+1) .

Note that

𝑐(𝛽) =
∑
𝑚≥1

𝑒−𝜒𝛽 (𝑚+1) ��{C ⊂ (Z2)∗ : C ∩ 𝑏 ≠ ∅, 𝑑 (C) = 𝑚}
�� ≤ 𝑒−𝜒𝛽 , (2.11)

where we used that
��{C ⊂ (Z2)∗ : C ∩ 𝑏 ≠ ∅, 𝑑 (C) = 𝑚}

�� ≤ 𝑒𝑐𝑚 for some 𝑐 > 0. (To see this, replace the
marked 𝑒 ∈ C intersecting b by a marked boundary edge 𝑒0 ∈ 𝜕C with the same y-coordinate (say) at
the cost of a factor of m; then, when enumerating the smallest connected set of edges of Z2 containing
the marked 𝑒0 and specified edges 𝜕C, regard 𝜕C as the vertices of a 6-regular graph (whose vertices
are the Z2 bonds and two are adjacent if they share an end point; that is, the line graph of Z2), and recall



Forum of Mathematics, Sigma 13

that in a graph whose maximum degree is Δ , the number of m-vertex connected subgraphs rooted at a
given vertex is at most (𝑒Δ)𝑚.) Using the fact that C ∩ Δ𝛾 ≠ ∅ implies C ∩ ∇𝛾 ≠ ∅, we have∑

C∩Δ𝛾≠∅
Φ𝐷 (C; 𝛾) = −3𝑐(𝛽) |𝛾 | +

∑
C∩∇𝛾≠∅

Φ′
𝐷 (C; 𝛾).

Thus, we have

𝑞𝐷 (𝛾) = exp
(
− (𝛽 + 3𝑐(𝛽)) |𝛾 | +

∑
C∩∇𝛾≠∅

Φ′
𝐷 (C; 𝛾)

)
.

Since 𝑓 (𝛽) := 𝛽 + 3𝑐(𝛽) is strictly increasing for all 𝛽 large enough, we will henceforth redefine
𝛽 = 𝑓 (𝛽) so that we may drop the laborious 3𝑐(𝛽) from our weights:

𝑞𝐷 (𝛾) = exp
(
− 𝛽 |𝛾 | +

∑
C∩∇𝛾≠∅

Φ′
𝐷 (C; 𝛾)

)
. (2.12)

A useful comparison to record at this stage is that, for any 𝐷 ⊂ R2,����log
𝑞𝐷 (𝛾)
𝑞(𝛾)

���� ≤ 6𝑒−𝜒𝛽 |𝛾 |. (2.13)

Remark 2.10. For any domain 𝐷 ⊂ R2, the nonnegative decoration functions Φ′(C; 𝛾) still satisfy
Properties (P1) to (P4) above, and the modified nonnegative decoration functions Φ′

𝐷 (C; 𝛾) still satisfy
Properties (M1) and (M2).

We next uncover the product structure of 𝑞𝐷 . Defining Ψ𝐷 (C, 𝛾) :=
(
exp(Φ′

𝐷 (C; 𝛾)) −1
)
1{C∩∇𝛾≠∅},

we may write

exp
( ∑
C∩∇𝛾≠∅

Φ′
𝐷 (C; 𝛾)

)
=

∏
C∩∇𝛾≠∅

( (
𝑒Φ

′
𝐷 (C;𝛾) − 1

)
+ 1

)
=

∑
C={C𝑖 }

∏
𝑖

Ψ𝐷 (C𝑖; 𝛾),

where the sum goes over all possible finite collections C of clusters. Given this, for any contour 𝛾 and
any collection C of clusters, we define the animal weight 𝑞𝐷 (Γ) of the animal Γ = [𝛾, C] by

𝑞𝐷 (Γ) = 𝑞𝐷 ([𝛾, C]) := 𝑒−𝛽 |𝛾 |
∏
C∈C

Ψ𝐷 (C; 𝛾), (2.14)

and observe

𝑞𝐷 (𝛾) =
∑

Γ=[𝛾,C ]
𝑞𝐷 (Γ).

The above allows us to consider the free and modified Ising polymer measures as probability measures
on animals:

Px (·
�� 𝛾 ⊂ 𝐷) = G (x

�� 𝛾 ⊂ 𝐷, Γ ∈ ·)
G (x

�� 𝛾 ⊂ 𝐷) and Px
𝐷 (·) :=

G𝐷 (x
�� Γ ∈ ·)

G𝐷 (x)
. (2.15)

Due to the product structure of 𝑞𝐷 (Γ), it is often convenient to consider animals rather than contours;
indeed, we will see in Section 4.1 that the product structure begets a connection with a random walk,
which is crucial to our analysis.

When D is taken to be R2, we will omit D from the notation laid out above.
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2.5. Notation for Ising polymers and animals

Below, we set notation that will be used throughout the article in the context of Ising polymers and
animals. Recall that we regard Ising polymers as connected paths in the lattice Z2 rather than the dual
lattice (Z2)∗ via the translation map 𝜄 : o∗ ↦→ 0 (the convention hereafter, excluding Section 3).

◦ We write 𝑄 := [0, 𝑁]2.
◦ For a point u ∈ Z2, we will write u1 and u2 to denote the x-coordinate and y-coordinate of u,

respectively.
◦ For a subset 𝐸 ⊂ Z2, we’ll write u + 𝐸 to denote the translation of E by the vector defined by u.
◦ For a contour 𝛾, we write |𝛾 | to denote the number of bonds in 𝛾. We write (𝛾(0), . . . , 𝛾(|𝛾 |)) to

denote the ordered vertices of 𝛾.
◦ For an animal Γ := [𝛾, C], we write |Γ| := |𝛾 |, and X(Γ) := X(𝛾) to denote the displacement of 𝛾;

that is, the vector in Z2 given by the end point of 𝛾 minus the start point of 𝛾.
◦ For a pair of contours 𝛾 := (𝛾(0), . . . , 𝛾(|𝛾 |)) and 𝛾′ := (𝛾′(0), . . . , 𝛾′( |𝛾′ |)), letΔ := 𝛾(|𝛾 |)−𝛾′(0).

We define their concatenation to be

𝛾 ◦ 𝛾′ :=
(
𝛾(0), . . . , 𝛾(|𝛾 |),Δ + 𝛾′(1), . . . ,Δ + 𝛾′( |𝛾′ |)

)
.

Similarly, for a pair of animals Γ := [𝛾, C] and Γ′ := [𝛾′, C ′], we define their concatenation to be

Γ ◦ Γ′ := [𝛾 ◦ 𝛾′, C ∪ C ′] .

◦ For u, v ∈ Z2, we write 𝛾 : u → v to indicate that 𝛾(0) = u and 𝛾(|𝛾 |) = v. We write Γ : u → v to
indicate that Γ = [𝛾, C] for some contour 𝛾 : u → v.

◦ For a set 𝐷 ⊂ R2, we say Γ = [𝛾, C] ⊂ 𝐷 if 𝛾 as well as all clusters C ∈ C are contained in D.
◦ For any 𝐷 ⊂ R2, we define the set of contours

P𝐷 (u, v) := {𝛾 : 𝛾 ⊂ 𝐷, 𝛾 : u → v}.

When u = 0, we will simply write P𝐷 (v). We’ll write Γ ∈ P𝐷 (u, v) for animals Γ to mean Γ = [𝛾, C]
for some contour 𝛾 ∈ P𝐷 (u, v).

2.6. The Wulff shape

Now, define the Wulff shape

W :=
⋂
y∈R2

{h ∈ R2 : h · y ≤ 𝜏𝛽 (y)},

which is clearly closed and convex (as it is the intersection of half-spaces). Observe that

W =

⎧⎪⎪⎨⎪⎪⎩h ∈ R2 :
∑
y∈Z2

𝑒h·yG (y) < ∞
⎫⎪⎪⎬⎪⎪⎭.

Indeed, from Equation (2.8), we have

logG (y) = −𝜏𝛽 (y)
(
1 + 𝑜 ‖y‖1 (1)

)
. (2.16)

It follows that the sum in the second expression for W converges if and only if h · y < 𝜏𝛽 (y) for all
y ∈ Z2 large, which by homogeneity and continuity of 𝜏𝛽 is equivalent to the same holding for all y ∈ R2.
Including the equality case h · y = 𝜏𝛽 (y) in the first expression for W is equivalent to taking the closure
of the set in the second expression.
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2.7. Cone points, the irreducible decomposition of animals and weight factorization

Let us define the forward cone Y� := {(𝑥, 𝑦) ∈ Z2 : |𝑦 | ≤ 𝑥} and the backward cone Y� := −Y�. We
will also need Y�𝛿 := {(𝑥, 𝑦) ∈ Z2 : |𝑦 | ≤ 𝛿𝑥} for 𝛿 > 0. Given a contour 𝛾 and an animal Γ = [𝛾, C],
we say that u ∈ 𝛾 is a cone point for 𝛾 if

𝛾 ⊂ u + Y� ∪ u + Y�,

and we say u ∈ 𝛾 is a cone point for Γ if

Γ ⊂ u + Y� ∪ u + Y� .

Recall from Section 2.5 that the previous display means that the forward and backward cones emanating
from u fully contain 𝛾 as well as all clusters C in C. Of course if u ∈ 𝛾 is a cone point for Γ, then u is a
cone point for 𝛾 as well. Note that for any u, v ∈ Z2, u ∈ v + Y� if and only if v ∈ u + Y�.

If Γ has two cone points u and v, the contour part of Γ between u and v as well as all associated
clusters are entirely contained within the ‘diamond’ u+Y�∩v+Y�. An animal is called left-irreducible
if it contains no cone points and if it is entirely contained in the backwards cone emanating from its end
point. Similarly, an animal is called right-irreducible if it contains no cone points and it is contained in
the forward cone emanating from its start point. An animal is called irreducible if it is both left- and
right-irreducible. We let AL,AR and A be the sets of left-irreducible, right-irreducible and irreducible
animals, respectively, with start point at the origin.

Consider now an animal Γwith at least two cone points, and decompose it into (left-/right-) irreducible
animals as follows:

Γ = Γ (𝐿) ◦ Γ (1) ◦ · · · ◦ Γ (𝑛) ◦ Γ (𝑅) , (2.17)

for some 𝑛 ≥ 1, Γ (𝐿) ∈ AL, Γ (𝑅) ∈ AR, and Γ (𝑖) ∈ A for 𝑖 = 1, . . . , 𝑛. For 𝑖 ∈ {𝐿, 1, . . . , 𝑛, 𝑅}, we will
write

Γ (𝑖) =: [𝛾 (𝑖) , C𝑖] .

From the definition of a cone point, any cluster C ∈ C𝑖 will be such that C ∩ ∇𝛾 ( 𝑗) = ∅ for 𝑗 ≠ 𝑖.
Informally, this means that any cluster of Γ (𝑖) will not be a cluster of Γ ( 𝑗) . Thus, the weights 𝑞𝐷 (Γ)
‘factorize’ into a product of the weights of the irreducible pieces:

𝑞𝐷 (Γ) =
∏

𝑖∈{𝐿,1,...,𝑛,𝑅}
𝑒−𝛽 |𝛾

(𝑖) |
∏
C∈C𝑖

Ψ𝐷 (C; 𝛾) = 𝑞𝐷 (Γ (𝐿) )𝑞𝐷 (Γ (𝑅) )
𝑛∏
𝑖=1

𝑞𝐷 (Γ (𝑖) ). (2.18)

When 𝛾 ⊂ 𝑄, note that the shape of the forward and backward cones necessitates

Γ (1) ◦ · · · Γ (𝑛) ⊂ [1, 𝑁 − 1] × (−∞, 𝑁]

so that Equation (2.18) becomes

𝑞𝑄 (Γ) = 𝑞𝑄 (Γ (𝐿) )𝑞𝑄 (Γ (𝑅) )
𝑛∏
𝑖=1

𝑞H(Γ (𝑖) ). (2.19)

We write Cpts(𝛾) and Cpts(Γ) to denote the set of cone points of 𝛾 and the set of cone points of
Γ, respectively. Let 𝑛 := 𝑛(Γ) = |Cpts(Γ) | − 1 as above so that n is equal to the number of irreducible
pieces of Γ. We label the cone points of Γ by 𝜁 (1) , . . . , 𝜁 (𝑛+1) , where the ordering is strictly increasing
in the x-coordinates, that is,

𝜁 (𝑖)1 < 𝜁 (𝑖+1)
1 .
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The set Cpts(Γ) therefore takes on a natural meaning as an ordered 𝑛(Γ)−tuple, and so we will abuse
notation and write

Cpts(Γ) =
(
𝜁 (𝑖)

)𝑛+1
𝑖=1 =

(
X(Γ (𝐿) ),X(Γ (𝐿) ) + X(Γ (1) ), . . . ,X(Γ (𝐿) ) + · · · + X(Γ (𝑅) )

)
. (2.20)

The following result of [32] states that the free weight of contours in Z2 that have large length and
contain a sublinear number of cone points compared to the distance of the end point is exponentially
small compared to G.

Lemma 2.11 ([32, Eq. (4.5)]7). Fix any 𝜖, 𝛿 ∈ (0, 1). There exist 𝛽0 ∈ (0,∞), 𝜈0 > 0, 𝛿0 > 0 and 𝑐 > 0
such that the following bounds hold uniformly over 𝛽 ≥ 𝛽0, y ∈ Y�𝛿 \ {0} and 𝑟 ≥ 1 + 𝜖:

G
(
y

�� |𝛾 | ≥ 𝑟 ‖y‖1
)
≤ 𝑐𝑒−𝜈0𝛽𝑟 ‖y‖1G (y) (2.21)

G
(
y

�� |Cpts(𝛾) | < 2𝛿0‖y‖1
)
≤ 𝑐𝑒−𝜈0𝛽 ‖y‖1G (y). (2.22)

In [32],8 it is claimed without proof that the an analogue of Lemma 2.11 also holds for animals. For
completeness, we supply the result as well as a proof below.

Proposition 2.12. For any 𝛿 ∈ (0, 1), there exist 𝜈 > 0 and 𝑐 > 0 such that the following bounds hold
uniformly over 𝛽 ≥ 𝛽0, and y ∈ Y�𝛿 \ {0}:

G (y
�� |Cpts(Γ) | < 𝛿0‖y‖1) ≤ 𝑐𝑒−𝜈𝛽 ‖y‖1G (y),

where 𝛿0 is as in Lemma 2.11.

Proof. The idea is to show that, for a typical Γ = [𝛾, C], many of the cone points for 𝛾 are also cone
points for Γ. We do this by showing that typically, C does not contain many clusters (more precisely, the
total 𝑑 (·)-size is not too big). The result then follows from Equation (2.22).

Our starting point is the following, which comes from Property (P2) and Remark 2.10 and states that
for some constant 𝑐1 > 0, for all 𝛽 > 0 sufficiently large, and for any animal [𝛾, C],

𝑞([𝛾, C]) ≤ 𝑒−𝛽 |𝛾 | exp
(
−𝑐1𝛽

∑
C∈C

𝑑 (C)
)
. (2.23)

Now, define the events

𝐴 = {Γ = [𝛾, C]
�� |Cpts(Γ) | < 𝛿0‖y‖1}

𝐵 = {Γ = [𝛾, C]
�� |Cpts(𝛾) | ≥ 2𝛿0‖y‖1, |𝛾 | ≤ 1.1‖y‖1}.

Then, from Equations (2.21) and (2.22), we have

G (y
�� 𝐴)

G (y) =
G (y

�� 𝐴, 𝐵)
G (y) +𝑂

(
𝑒−𝜈0𝛽 ‖y‖1

)
.

Now, consider a contour 𝛾 with at least 2𝛿0‖y‖1 cone points and an animal Γ such that Γ = [𝛾, C]
for some set of clusters C. Note that if Γ has less than 𝛿0‖y‖1 cone points, then the clusters of C must
intersect 𝛾 in such a way that at least 𝛿0‖y‖1 cone points of 𝛾 are not cone points of Γ. This necessitates
that the sum of 𝑑 (C) over C ∈ C exceeds 𝛿0‖y‖1. Hence, we can write

7In [32], 1+ 𝜖 is replaced by an unspecified constant 𝑟0; however, it is trivial to see that 𝑟0 may be taken to be arbitrarily close to
1 in [32, Lemma 4], which is the same 𝑟0 as in [32, Eq. 4.5]. Additionally, our condition y ∈ Y�𝛿 \ {0} appears as x ∈ Q+ in [32].

8See the paragraph containing Equation (4.9) in [32]
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G (y
�� 𝐴, 𝐵)

≤
∑
𝛾:0→y

|𝛾 | ≤1.1‖y‖1

∑
𝑚≥𝛿0 ‖y‖1

𝑚∑
𝑛=1

𝑛∑
𝑘=1

(
3|𝛾 |
𝑘

) ∑
𝑛=(𝑛1 ,...,𝑛𝑘 )
𝑛1+···+𝑛𝑘=𝑛

∑
𝑚=(𝑚1 ,...,𝑚𝑛)
𝑚1+···+𝑚𝑛=𝑚

( 𝑘∏
𝑖=1

|𝐺𝑖,𝑛,𝑚 |
)
𝑒−𝛽 |𝛾 |−𝑐1𝛽𝑚,

where: the second sum accounts for the possible values of 𝑚 =
∑

C∈C 𝑑 (C); the third sum accounts for
the possible values of 𝑛 = |C | given m; the fourth sum and the binominal coefficient account for the
number of possible bonds of ∇𝛾 that the clusters of C intersect; the fifth sum accounts for the number of
clusters that intersect a particular bond of ∇𝛾 (given k and an arbitrary labeling of the bonds 𝑏1, . . . , 𝑏𝑘 );
the sixth sum accounts for the possible 𝑑 (·)-value of each of the n clusters given that their total 𝑑 (·)-sum
is m, and where 𝑚 = (𝑚1, . . . , 𝑚𝑛) is ordered such that 𝑚1, . . . , 𝑚𝑛1 represent the 𝑑 (·)-values of the 𝑛1
clusters intersecting 𝑏1, 𝑚𝑛1+1, . . . , 𝑚𝑛1+𝑛2 represent the 𝑑 (·)-values of the 𝑛2 clusters intersecting 𝑏2
and so on; each 𝐺𝑖,𝑛,𝑚 denotes the set of all possible collections of the 𝑛𝑖 clusters intersecting 𝑏𝑖 given
the aforementioned 𝑛 and 𝑚; and lastly, the exponential is the cumulative upper bound on 𝑞([𝛾, C])
given by Equation (2.23) (given that the cumulative 𝑑 (·) is m).

Now, similar to Equation (2.11), the number of clusters C with 𝑑 (C) = 𝑟 and intersecting some fixed
bond b is bounded from above by 𝑒𝑐2𝑟 , and therefore,

𝑘∏
𝑖=1

|𝐺𝑖,𝑛,𝑚 | ≤ 𝑒𝑐2 (𝑚1+···+𝑚𝑛) = 𝑒𝑐2𝑚.

Hence, G (y
�� 𝐴, 𝐵) is upper bounded by

∑
𝛾:0→y

|𝛾 | ≤1.1‖y‖1

𝑒−𝛽 |𝛾 |
∑

𝑚≥𝛿0 ‖y‖1

𝑚∑
𝑛=1

𝑛∑
𝑘=1

(
3|𝛾 |
𝑘

) ∑
𝑛=(𝑛1 ,...,𝑛𝑘 )
𝑛1+···+𝑛𝑘=𝑛

∑
𝑚=(𝑚1 ,...,𝑚𝑛)
𝑚1+···+𝑚𝑛=𝑚

𝑒−𝑐1𝛽𝑚𝑒𝑐2𝑚

≤
∑
𝛾:0→y

|𝛾 | ≤1.1‖y‖1

𝑒−𝛽 |𝛾 |
∑

𝑚≥𝛿0 ‖y‖1

𝑒−𝑐3𝛽𝑚
𝑚∑
𝑛=1

𝑛∑
𝑘=1

(
3|𝛾 |
𝑘

) (
𝑛 − 1
𝑘 − 1

) (
𝑚 − 1
𝑛 − 1

)

≤
∑
𝛾:0→y

|𝛾 | ≤1.1‖y‖1

𝑒−𝛽 |𝛾 |
∑

𝑚≥𝛿0 ‖y‖1

𝑒−𝑐3𝛽𝑚2𝑚 (2𝑚 − 1)23 |𝛾 | ≤ 𝑒−𝑐4𝛽 ‖y‖1
∑
𝛾:0→y

𝑒−𝛽 |𝛾 | .

Finally, the nonnegativity of the decorations Φ′ implies

G (y) =
∑

Γ=[𝛾,C ]
𝛾:0→y

𝑞([𝛾, C]) =
∑
𝛾:0→y

exp
(
−𝛽 |𝛾 | +

∑
C⊂Λ

C∩Δ𝛾≠∅

Φ′(C; 𝛾)
)
≥

∑
𝛾:0→y

𝑒−𝛽 |𝛾 | ,

and thus

G (y
�� 𝐴, 𝐵)

G (y) ≤ 𝑒−𝑐5𝛽 ‖y‖1 ,

concluding the proof. �

Remark 2.13. Note that the proof of Proposition 2.12 is such that, for any Ising polymer model G𝐷 or
G (·

�� 𝛾 ⊂ 𝐷) satisfying the analogous bounds in Lemma 2.11, Proposition 2.12 follows with G replaced
by G𝐷 or G (·

�� 𝛾 ⊂ 𝐷). This is used when we prove the existence of cone points for Γ in these models
in Lemma 5.7.
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2.8. Ornstein–Zernike theory and its applications

For h ∈ R2, we define𝑊h(·) by

𝑊h(Γ) := 𝑒h·X(Γ)𝑞(Γ)

for any animal Γ (not necessarily irreducible). For y ≠ 0, define the dual parameter hy by

hy = ∇𝜏𝛽 (y).

The homogeneity of 𝜏𝛽 (y) as per Equation (2.8) implies that hy ∈ 𝜕W (since hy · y = ∇𝜏𝛽 (y) · y = 𝜏𝛽 (y)
and recalling the first definition of W).

Proposition 2.14 below, which forms the main result of the Ornstein–Zernike theory for the Ising
polymer models, was stated in [32, Thm. 5] in a slightly different setting (namely, the cones are defined
differently here), pointing to [34] as its relevant input. Indeed, one may infer this result via an Ornstein–
Zernike analysis as in [34, Sec 3.3 and 3.4], but since (a) the models considered in that work do not
include Ising polymers, and (b) our setting differs somewhat from that of [32], we include a full proof
of this proposition in Appendix B.
Proposition 2.14. For any 𝛿 ∈ (0, 1), there exists 𝛽0 > 0 such that for all 𝛽 > 𝛽0 and for any
y ∈ Y�𝛿 \ {0}, the collection of weights𝑊hy defines a probability distribution on the set A of irreducible
animals. To emphasize that 𝑊hy defines a probability distribution (on irreducible animals), and for
consistency with [32], we use the notation

Phy (Γ) := 𝑒hy ·X(Γ)𝑞(Γ) = 𝑊hy (Γ). (2.24)

Let Ehy denote expectation under Phy . Then

Ehy [X(Γ)] = 𝛼y, (2.25)

for some constant 𝛼 := 𝛼(𝛽, y) > 0 – in particular, the expectation of X(Γ) under Phy is collinear to y.
Finally, there exists a ‘mass-gap’ constant 𝜈𝑔 > 0 such that for all 𝛽 > 0 large, y ∈ Y�𝛿 \{0}, and 𝑘 ≥ 1,∑

Γ∈AL∪AR

Phy (Γ)1{ |Γ | ≥𝑘 } ≤ 𝐶𝑒−𝜈𝑔𝛽𝑘 , (2.26)

where 𝐶 := 𝐶 (𝛽) > 0 is a positive constant.
Note that, since hy · y = 𝜏𝛽 (y) (by the homogeneity of 𝜏𝛽 as mentioned above), we have the following

from Equation (2.18)

𝑞(Γ) = 𝑒−𝜏𝛽 (y)Phy (Γ (𝐿) )Phy (Γ (𝑅) )
𝑛∏
𝑖=1
Phy (Γ (𝑖) ), (2.27)

for any Γ with at least two cone points. For u, v ∈ Z2 and a set of animals E, introduce

A(u, v; 𝐸) =
∑
𝑛≥1

∑
Γ (1) ,...,Γ (𝑛) ∈A

𝑛∏
𝑖=1
Phy (Γ (𝑖) )1{u+𝛾 (1) ◦·· ·◦𝛾 (𝑛) ∈PH (u,v) }1{u+Γ (1) ◦·· ·◦Γ (𝑛) ∈𝐸 } . (2.28)

When E is taken to be the set of all possible animals, we’ll simply write A(u, v; 𝐸) = A(u, v). Then, for
𝐷 = 𝑄 or H, Equation (2.27) allows us to write

G (y
�� 𝛾 ⊂ 𝐷, |Cpts(Γ) | ≥ 2)

= 𝑒−𝜏𝛽 (y)
∑

Γ (𝐿) ∈AL
𝛾 (𝐿) ⊂𝐷

Phy (Γ (𝐿) )
∑

Γ (𝑅) ∈AR
𝛾 (𝑅) ⊂𝐷

Phy (Γ (𝑅) ) A(X(Γ (𝐿) ), y − X(Γ (𝑅) )). (2.29)
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Note that the sum over n in Equation (2.28) above closely resembles the probability of a random walk
event. This product structure of probability weights Phy naturally leads to considering the random walk
model related to the law of Cpts(Γ) described in Section 4.1.

3. Proof of Theorem 1.1 modulo Theorem 1.2

In this section, we infer Theorem 1.1 from Theorem 1.2(a). Throughout the section, let𝐻𝐿 =  1
4𝛽 log 𝐿�.

Recall that, as per Equation (1.4), we wish to give a lower bound on the event

𝐸 :=
{

min
𝑥∈𝐼0

𝜌(𝑥) ≥ 𝛿 𝐿1/3
}
.

The fact that the definition of 𝜌(𝑥) pertains to the height-𝔥∗ (top) level line, where 𝔥∗ is random in
{𝐻𝐿−1, 𝐻𝐿} (as mentioned in the Introduction, the results of [14] determine it w.h.p. for side lengths
L outside of a critical subsequence) make this event delicate to work with. We will derive the required
lower bound on E via more tractable events, tailored to the analysis of a local rectangle of side length
� 𝐿2/3 located at the center of the bottom side of Λ𝐿 .

Let

𝑅0 := � 𝐿
2 − 3𝐿2/3, 𝐿2 + 3𝐿2/3� × �0, 2𝐿2/3�,

and let 𝑅1 ⊂ Λ𝐿 be the set of x ∈ Λ𝐿 at distance at most (log 𝐿)2 + 1 from 𝑅0. For fixed 𝛿 > 0, define
the marked region 𝔐 := 𝐼0×�0, 𝛿𝐿1/3�. Theorem 1.1 will follow from the next proposition, where here
and in what follows, x and y are ∗-connected if their Euclidean distance is at most

√
2.

Proposition 3.1. Fix 𝛽 ≥ 𝛽0. Let 𝐵𝑛 be the event that there is a ∗-connected path in 𝑅0, intersecting 𝔐,
whose length is ≥ (log 𝐿)2 and whose sites have height ≥ 𝐻𝐿 − 𝑛. Let 𝐶𝑛 be the event that there is no
simple path in 𝑅1 of length ≥ (log 𝐿)2 whose sites have height ≥ 𝐻𝐿 − 𝑛+1. Then, for every fixed 𝑛 ≥ 0
and 𝜖 > 0 there exists 𝛿 > 0 such that 𝜋0

Λ𝐿
(𝐵𝑛 ∩ 𝐶𝑛) < 𝜖 for all L large.

Proof of Theorem 1.1. Observe that

𝜋0
Λ𝐿
(𝐸𝑐 , 𝔥∗ = 𝐻𝐿) ≤ 𝜋0

Λ𝐿
(𝐵0 ∩ 𝐶0) + 𝑜(1).

Indeed, [14, Theorem 2a] implies that there are w.h.p. no level lines of length at least log2 𝐿 nested in
the height-𝔥∗ level line loop L∗ (implying𝐶0), whereas 𝐸𝑐 implies that L∗ intersects 𝔐; thus, following
its interior boundary for length at least (log 𝐿)2 will produce the path as per 𝐵0.

Similarly,

𝜋0
Λ𝐿
(𝐸𝑐 , 𝔥∗ = 𝐻𝐿 − 1) ≤ 𝜋0

Λ𝐿
(𝐵1 ∩ 𝐶1) + 𝑜(1),

again using that the height-𝔥∗ level line loop L∗ must encompass a ∗-chain of sites crossing the marked
region 𝔐 as in 𝐵1 and that 𝐶1 holds w.h.p. when 𝔥∗ = 𝐻𝐿 − 1 by [14, Theorem 2a]. The conclusion
now follows from Proposition 3.1. �

Proof of Proposition 3.1. Fix 𝑛 ≥ 0 and 𝜖 > 0. The following procedure will reveal the ‘outermost’
chainℭ ofZ2-connected sites of height at most𝐻𝐿−𝑛 that encloses, together with the southern boundary
of Λ𝐿 , the box 𝑅0. For each site x in the north, east and west boundaries of 𝑅1, reveal its Z2-connected
component of sites y ∈ 𝑅1 for which 𝜑y > 𝐻𝐿 − 𝑛. Let U denote the collection of all revealed vertices,
and let ℭ be the exterior boundary of U contained in 𝑅1. By definition, 𝜑y ≤ 𝐻𝐿 − 𝑛 for all y ∈ ℭ.
Now, let W denote the collection of sites whose exterior boundary is formed by ℭ and the southern
boundary of Λ𝐿 . On the event 𝐶𝑛, each connected component comprising U has diameter strictly less
than (log 𝐿)2; in particular, 𝑅0 ⊂ 𝑊 .
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Figure 2. The rectangles 𝑅0 (purple) and 𝑅1 (gray), and in between the region W (blue) whose boundary
conditions are raised via monotonicity to 𝐻𝐿 − 𝑛 except on the segment between xℓ and x𝑟 , where they
are set to 𝐻𝐿 − 𝑛 − 1.

Now, condition on ℭ, and let 𝜉 (ℭ) denote the boundary condition of W given by the heights on ℭ
and the sites of height 0 on 𝜕Λ. From the domain Markov property, we may deduce our desired bound
𝜋0
Λ𝐿
(𝐵𝑛 ∩ 𝐶𝑛) < 𝜖 if we can show

𝜋
𝜉 (ℭ)
𝑊 (𝐵𝑛) < 𝜖

uniformly over ℭ. Define xℓ :=  𝐿2 − 2𝐿2/3� and x𝑟 := xℓ + 4𝐿2/3�. Using that all heights on ℭ are
bounded by 𝐻𝐿 − 𝑛, that all heights on 𝜕Λ𝐿 are 0 (in particular, bounded by 𝐻𝐿 − 𝑛 − 1), and that 𝐵𝑛
is an increasing event, we have

𝜋
𝜉 (ℭ)
𝑊 (𝐵𝑛) ≤ 𝜋legs𝑊 (𝐵𝑛), (3.1)

where the boundary conditions legs are 𝐻𝐿 − 𝑛 − 1 on the horizontal line of sites �xℓ , x𝑟� × {−1} and
𝐻𝐿 − 𝑛 elsewhere (see Figure 2, noting the ‘legs’ of sites of height 𝐻𝐿 − 𝑛 protruding inwards from the
bottom boundary of W). Thus, it suffices to show the right hand is bounded by 𝜖 .

Moving to 𝜋legs𝑊 has two main advantages. The first is that there exists a unique open 𝐻𝐿 − 𝑛-contour
𝛾 under this measure, and in particular, the sites of height ≥ 𝐻𝐿 − 𝑛 along 𝛾 form a ∗-chain of sites of
length larger than (log 𝐿)2 (typically of order 𝐿2/3). Further, a standard Peierls argument shows that,
w.h.p. under 𝜋legs𝑊 , there are no such ∗-chains of length larger than log 𝐿. In particular, defining

𝜌𝛾 (𝑥) := min{𝑦 ≥ 0 : (𝑥, 𝑦) ∈ 𝛾} for 𝑥 ∈ R,

we have

𝜋legs𝑊 (𝐵𝑛) = 𝜋legs𝑊

(
min
𝑥∈𝐼0

𝜌𝛾 (𝑥) < 𝛿𝐿1/3) + 𝑜(1). (3.2)

The second advantage of moving to 𝜋legs𝑊 is that we may couple 𝛾 under the no-floor measure
�̂�legs𝑊 with a modified Ising polymer law in the half-space Px

H
(see Definition 2.6), for which we have

Theorem 1.2. After exhibiting this in Claim 3.2, we compare �̂�legs𝑊 and 𝜋legs𝑊 via Equation (A.8).
We begin with the argument relating �̂�legs𝑊 to Px

H
. From now on, we shift W to the left so that

xℓ = 0 and x𝑟 = 4𝐿2/3�. Note that 𝛾 is a contour in W with start point o∗ ∈ (Z2)∗ and end point
x := x𝑟 − (1/2, 1/2). We will couple �̂�legs𝑊 with the Ising polymer law Px

H
, defined using the SOS

decoration weights Φ(C; 𝛾) := 𝜙(C; 𝛾) and ΦH(C; 𝛾) := 𝜙(C; 𝛾)1{C⊂H} from Proposition 2.1. This
coupling is natural in light of the very far distance of ℭ from both o∗ and x. Define 𝑁 := 4𝐿2/3�.
Recall the set P𝐷 (u, v) from Section 2.5. Let �̄� denote the region in R2 enclosed by W, that is, the
region enclosed by the Z2-edges connecting the boundary vertices of W. Then 𝛾 ∈ P�̄� (o∗, x). Lower
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the boundary conditions of �̂�legs𝑊 to 0, 1, 1, 1 using the shift invariance of the no-floor model. Then
Observation 2.7 states that 𝛾 ∼ �̂�legs𝑊 has the Ising polymer law Px

�̄�
, and the decoration weights are

defined via Φ(C; 𝛾) := 𝜙(C; 𝛾) and Φ�̄� (C; 𝛾) := 𝜙(C; 𝛾)1{C⊂�̄� }.

Claim 3.2. Extend �̂�legs𝑊 to a probability measure on all contours in PH(o∗, x) via �̂�legs𝑊 (𝛾) = 0 for all
𝛾 ∉ P�̄� (o∗, x). For some constant 𝐶 > 0 and for all 𝛽 > 0 large enough, we have��Px

H − �̂�
legs
𝑊

��
tv ≤ 𝐶𝑒

−𝛽𝐶−1𝑁 .

Proof of Claim 3.2. We use the identification of the law of the contour induced by �̂�legs𝑊 with Px
�̄�

throughout this proof.
The main input for the proof is the following: for any 𝛿 ∈ (0, 1) and for all 𝛽, 𝑁 > 0 large,

max
(
�̂�legs𝑊

(
|𝛾 | ≥ (1 + 𝛿)𝑁

)
, Px
H

(
|𝛾 | ≥ (1 + 𝛿)𝑁

) )
≤ 𝑒−𝛽𝛿𝑁 /2. (3.3)

We prove Equation (3.3) now. Using the decay of 𝜙(C; 𝛾) (Proposition 2.1(iv)) as in Equation (2.11),
we have the following for any 𝛾 : o∗ → x:∑

C∩Δ𝛾≠∅
|𝜙(C; 𝛾) | ≤

∑
y∈Δ𝛾

∑
C�y

sup
𝛾
|𝜙(C; 𝛾) | ≤ 3|𝛾 |𝑒−(𝛽−𝛽0) . (3.4)

Since |𝛾 | is always larger than N, we have

min
(
GH (x), G�̄� (x)

)
≥ exp

(
−

(
𝛽 + 3𝑒−(𝛽−𝛽0) )𝑁)

. (3.5)

On the other hand, Equation (3.4) implies

max
(
GH

(
x

�� |𝛾 | ≥ (1 + 𝛿)𝑁
)
, G�̄�

(
x

�� |𝛾 | ≥ (1 + 𝛿)𝑁
) )

≤
∑
𝛾⊂H

|𝛾 | ≥(1+𝛿)𝑁

exp
(
− (𝛽 − 3𝑒−(𝛽−𝛽0) ) |𝛾 |

)
≤ 𝑒−(𝛽−𝑐) (1+𝛿)𝑁 ,

where 𝑐 > 0 is a constant independent of 𝛽 and N. The above two bounds yield Equation (3.3). Note
that a consequence of Equation (3.3) is

�̂�legs𝑊

(
𝑑𝐿∞ (𝛾,ℭ) ≤ (1 − 2𝛿)𝑁

)
≤ 𝑒−𝛽𝛿𝑁 /2. (3.6)

Now, fix any 𝛿 ∈ (0, 1/2). Observe that

𝑞H(𝛾)/𝑞�̄� (𝛾) = exp
( ∑
C∩Δ𝛾≠∅

𝜙(C; 𝛾)1{C⊂H\𝑊 }

)
.

For any contour 𝛾 such that 𝑑𝐿∞ (𝛾,ℭ) > (1 − 2𝛿)𝑁 , we have the following for all 𝛽 > 0 large:∑
C∩Δ𝛾≠∅

|𝜙(C; 𝛾) |1{C⊂H\𝑊 } ≤
∑

y∈Δ𝛾

∑
C�y

sup
𝛾
|𝜙(C; 𝛾) | ≤ |𝛾 |𝑒−𝑐𝛽𝑁 ,

where in the last inequality, 𝑐 > 0 is a constant independent of N and 𝛽 large, and the bound follows
similarly to Equation (3.4). For any |𝛾 | < (1 + 𝛿)𝑁 , Equation (3.4) yields an upper bound on GH(x) of
exp(−(𝛽 − 3(1 + 𝛿)𝑒−(𝛽−𝛽0) )𝑁). This upper bound, the lower bound on G�̄� (x) in Equation (3.5), and
the previous display imply the following for any |𝛾 | < (1 + 𝛿)𝑁:���̂�legs𝑊 (𝛾) − Px

H(𝛾)
�� ≤ 𝑒−𝑐′𝛽𝑁 ,
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where 𝑐′ > 0 is a constant independent of 𝛽 and N. Since the number of connected paths in (Z2)∗
rooted at o∗ of length at most (1 + 𝛿)𝑁 is trivially bounded 4(1+𝛿)𝑁 , the previous display along with
Equation (3.3) imply that the total variation distance between �̂�legs𝑊 viewed as a probability measure on
PH(o∗, x) and Px

H
is bounded by 𝑒−𝑐′′𝛽𝑁 . �

Now, from Equation (A.8), we have

𝜋legs
�̃�0

(𝛾) ∝ �̂�legs
�̃�0

(𝛾) exp
(
−𝜆

(𝑛)

𝐿
𝐴(𝛾) + 𝑜(1)

)
, (3.7)

where 𝐴(𝛾) denotes the area under 𝛾 in W. From Equation (3.1) and Equation (3.2), the claim will be
proven if we can show that for any 𝜖 > 0, there exists 𝛿 > 0 such that

𝜋legs𝑊 (min
𝑥∈𝐼0

𝜌𝛾 (𝑥) < 𝛿𝐿1/3) < 𝜖 (3.8)

for L sufficiently large. Theorem 1.2 and Claim 3.2 imply that, under horizontal rescaling by
|x|1 = 4𝐿2/3� and vertical rescaling by 4𝐿2/3�1/2, 𝛾 under �̂�legs𝑊 converges weakly to a Brownian
excursion as 𝐿 →∞. In particular, �̂�legs𝑊 (min𝑥∈𝐼0 𝜌

𝛾 (𝑥) < 𝛿𝐿1/3) can be made arbitrarily close to 0 by
taking 𝛿 small enough. Letting Ẽ denote expectation with respect to �̂�legs𝑊 , we have

𝜋legs𝑊

(
min
𝑥∈𝐼0

𝜌𝛾 (𝑥) < 𝛿𝐿1/3) = Ẽ
[
1{min𝑥∈𝐼0 𝜌

𝛾 (𝑥)<𝛿𝐿1/3 }𝑒
− 𝜆(𝑛)

𝐿 𝐴(𝛾)+𝑜 (1)
]

Ẽ

[
𝑒−

𝜆(𝑛)
𝐿 𝐴(𝛾)+𝑜 (1)

] .

The denominator is bounded away from 0 because 𝜆 (𝑛) is bounded for fixed 𝛽, and the Brownian
excursion limit of 𝛾 implies that, for any 𝑐 > 0, Ẽ[𝑒− 𝑐

𝐿 𝐴(𝛾) ] converges to E[𝑒−𝑐𝐴( 𝜉 ) ], where 𝜉 has the
law of a Brownian excursion on [0, 4] (see also Claim 7.4 below, where this is explained in more detail
in the more delicate setting of Theorem 7.1).
𝐴(𝛾) is unlikely to be much bigger than 𝐿2/3 · 𝐿1/3 = 𝐿 (making the expectation strictly positive).

Hence, since the exponential in the numerator is bounded above by 1 + 𝑜(1), we get

𝜋legs𝑊

(
min
𝑥∈𝐼0

𝜌𝛾 (𝑥) < 𝛿𝐿1/3) ≤ 𝐶�̂�legs𝑊

(
min
𝑥∈𝐼0

𝜌𝛾 (𝑥) < 𝛿𝐿1/3) ,
for some C depending only on 𝛽 and L large enough. Since the right-hand side can be made arbitrarily
small by taking 𝛿 small enough, as discussed above, this implies Equation (3.8), thereby concluding the
proof. �

4. The effective random walk model, free Ising polymers and limit theorems

The factorization of 𝑞(Γ) from Equation (2.27) and the input from Ornstein–Zernike theory
(Proposition 2.14) naturally leads one to consider the 2D effective random walk defined in Section 4.1.
In that subsection, we further expose the connection between this effective random walk and the cone
points of the free Ising polymer model in H. A key result there is Proposition 4.1, which enables a quan-
titative comparison between the partition function G (x

�� 𝛾 ⊂ H) and the probability that the random
walk stays in H. In particular, we will be able to rule out bad events for the cone points of the free Ising
polymer in H using random walk estimates. In the next section, we develop comparison results between
free and modified Ising polymers such that bad events for the cone points of modified Ising polymers
can also be ruled out using random walk estimates. Eventually, this will lead to a coupling between the
cone points of the modified Ising polymer and our random walk.

In the rest of this section, we develop various limit theorems for our random walk that will be used
in the analysis of (modified) Ising polymers in Section 5, culminating in the proof of Theorem 2.8 (and
thus Theorem 1.2).
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4.1. The random walk model and free Ising polymers

Consider the random walk (S(𝑖))𝑖∈Z≥0 , whose law will be denoted by P, with i.i.d. increments
{𝑋 (𝑖) = (𝑋1(𝑖), 𝑋2(𝑖))}𝑖≥1 of step distribution X, where for any �𝑣 ∈ Z2,

P(𝑋 = �𝑣) =
∑
Γ∈A
Phx (Γ)1{X(Γ)=�𝑣 } . (4.1)

We will denote by (S1 (·),S2(·)) the two coordinates of S(·). For u ∈ Z2, we will write Pu to denote the
law of S(·) started from S(0) = u. From Equation (2.25), we have E[𝑋] = 𝛼x, and from Equation (2.26),
we inherit exponential tail decay: For all 𝛽 sufficiently large, there exists a constant 𝐶 ′ := 𝐶 ′(𝛽) > 0
such that for all 𝑘 ≥ 1, we have ∑

�𝑣∈Z2:‖ �𝑣 ‖1≥𝑘
P(𝑋 = �𝑣) ≤ 𝐶 ′𝑒−𝜈𝑔𝛽𝑘 . (4.2)

We remark that the step distribution of X need not be symmetric in the y-coordinate 𝑋2 due to the
northeast splitting rule (this is the key difference between our random walk and the random walk
considered in [31] and why we cannot use their random walk results here). Also note thatP(𝑋 ∈ Y�) = 1,
and thus the x-coordinate 𝑋1 > 0 a.s.

We will write 𝐻𝐴
𝐸 to denote the first hitting time of a set 𝐸 ⊂ R2 by a stochastic process 𝐴., omitting

the A from the notation when the stochastic process is clear. For singleton sets, we will simply write
𝐻𝐴

u rather than 𝐻𝐴
{u}. Let H− := R × R<0. In light of the factorization (2.27), for fixed Γ (𝐿) and Γ (𝑅) ,

we will be interested in our random walk S(·) started from Γ (𝐿) and conditioned on the event

{𝐻x−X(Γ (𝑅) ) < 𝐻H− }.

It will therefore be helpful to obtain an expression for Pu (𝐻v < 𝐻H−) in terms of animal weights, for
any u, v ∈ Z2. Towards this end, define the sets

V+u,v := {(�𝑣1, . . . , �𝑣𝑛) ∈ (Z2)𝑛 : 𝑛 ≥ 1, u + �𝑣1 + · · · + �𝑣𝑚 = v, u + �𝑣1 + · · · + �𝑣𝑖 ∈ H ∀1 ≤ 𝑖 ≤ 𝑛}
A+u,v := {(Γ (1) , . . . , Γ (𝑛) ) ∈ A𝑛 : 𝑛 ≥ 1,

(
X(Γ (1) ), . . . ,X(Γ (𝑛) )

)
∈ V+u,v}, (4.3)

and, for a set of animals E, introduce

A+(u, v; 𝐸) =
∑
𝑛≥1

∑
(Γ (1) ,...,Γ (𝑛) ) ∈A+u,v

𝑛∏
𝑖=1
Phx (Γ (𝑖) )1{Γ (1) ◦·· ·◦Γ (𝑛) ∈𝐸 } .

When E is taken to be the set of all possible animals, we’ll simply write A+(u, v; 𝐸) = A+(u, v). Observe
that

Pu
(
𝐻v < 𝐻H−

)
=

∑
𝑛≥1

∑
( �𝑣1 ,..., �𝑣𝑛) ∈V+u,v

𝑛∏
𝑖=1
P(𝑋 = �𝑣𝑖) = A+(u, v). (4.4)

In words, the above equation states that the probability of the random walk hitting v before leaving H−
is equal to a sum over all possible products of weights of irreducible animals whose concatenation has
all cone points in H.

Recall A(·, ·; ·) from Equation (2.28), and note that for any u, v ∈ Z2 and any set of animals E,

A(u, v; 𝐸) ≤ A+(u, v; 𝐸), (4.5)

since the (only) difference between A+(u, v; 𝐸) and A(u, v; 𝐸) is that the sum defining A(u, v; 𝐸)
restricts to tuples of irreducible animals such that the entire concatenation u+Γ (1) ◦· · ·◦Γ (𝑛) is contained
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inH, while the sum defining A+(u, v; 𝐸) requires only the cone points to stay inH. In particular, Cpts(Γ)
(viewed as an ordered tuple, see Equation (2.20)) under the conditioned law Px (·

�� Γ (𝐿) , Γ (𝑅) , 𝛾 ⊂ H) and
the trajectory of the random walk PX(Γ (𝐿) ) (·

�� 𝐻x−X(Γ (𝑅) ) < 𝐻H−) only differ due to these requirements.
Ultimately, we will achieve a coupling between Cpts(Γ) with the trajectory of the random walk

because of an entropic repulsion result (Proposition 5.11): The cone points of Γ in the ‘bulk’ of the strip
[0, 𝑁] × [0,∞) stay far away from the boundary of H with high probability so that the aforementioned
difference between A+ and A becomes negligible. A major step towards showing entropic repulsion is
is the following crucial result from [32].9

Proposition 4.1 [32, Theorem 7]. Recall 𝜈𝑔 from Proposition 2.14. There exists 𝛿 ∈ (0, 𝜈𝑔/4) and
𝛽0 > 0 such that for all 𝛽 > 𝛽0, there exists a constant 𝐶 := 𝐶 (𝛽) > 0 such that

sup
u,x−v∈Y

u,v∈H

𝑒−𝛿𝛽 ( ‖u‖1+‖x−v ‖1)Pu (𝐻v < 𝐻H−) ≤ 𝐶𝑒𝜏𝛽 (x)G (x
�� 𝛾 ⊂ H).

Proposition 4.1 combined with the exponential tail decay ofΓ (𝐿) andΓ (𝑅) (2.26) (note the significance
of 𝛿 < 𝜈𝑔/4) will allow us to eliminate bad events for Cpts(Γ) under the free Ising polymer law via
estimates for random walks in a half-space, which are significantly easier to obtain compared to directly
analyzing the polymer law.

4.2. Limit theorems for our random walk, confined to the half-space

We now state two important limit theorems, Theorems 4.2 and 4.3, for our random walk S(·) confined to
positive half-space, though our results apply to a more general class of 2D random walks. Our random
walk S(·) is on Z2 and has i.i.d. increments X with mean (𝜇, 0) for some 𝜇 > 0, exponential tails and
satisfies 𝑋1 > 0 a.s. Let us also write Var(𝑋) = (𝜎2

1 , 𝜎
2
2 ).

Let 𝑉1 denote the unique positive harmonic function for the one-dimensional random walk S2 killed
upon leaving (0,∞) satisfying

lim
𝑎→∞

𝑉1(𝑎)
𝑎

= 1.

The uniqueness of𝑉1 was established by Doney in [22]. Similarly, let𝑉 ′1 denote the analogous harmonic
function for the random walk −S2.

Theorem 4.2. Fix any 𝐴 > 0 and any 𝛿 ∈ (0, 1/2). Uniformly over 𝑘 ∈ [𝑁/𝜇 − 𝐴
√
𝑁, 𝑁/𝜇 + 𝐴

√
𝑁]

and 𝑢, 𝑣 ∈ (0, 𝑁1/2−𝛿] ∩ N, we have the following results.

1. There exist constants C > 0 and 𝜅 := 𝜅(𝑋) > 0 such that

P(0,𝑢)

(
S(𝑘) = (𝑁, 𝑣), 𝐻H− > 𝑘

)
∼ C𝜅

𝑉1 (𝑢)𝑉 ′1 (𝑣)
𝑘2 exp

(
− (𝑁 − 𝑘𝜇)2

2𝑘𝜎2
1

)
. (4.6)

Furthermore, if

𝑝𝑁 ,𝐴 := P(0,𝑢)
(
𝐻(𝑁 ,𝑣) ∈ [ 𝑁𝜇 − 𝐴

√
𝑁, 𝑁𝜇 + 𝐴

√
𝑁]

�� 𝐻(𝑁 ,𝑣) < 𝐻H−

)
,

then

lim
𝐴→∞

lim inf
𝑁→∞

𝑝𝑁 ,𝐴 = 1. (4.7)

9The notation in [32] differs from ours: Note that their quantity Phx
𝛽,+ (u, v) (defined in [32, Eq. 5.10]) is exactly our A+ (u, v) ,

which by Equation (4.4) is nothing but Pu (𝐻v < 𝐻H− ) .
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2. Let Ŝ2(·) denote the denote the linear interpolation of the points (𝑛,S2(𝑛))𝑛∈N, viewed as an element
of 𝐶 [0,∞). The family of conditional laws

Q𝑘
𝑢,𝑣 (·) := P(0,𝑢)

(( Ŝ2(𝑡𝑘)
𝜎2
√
𝑘

)
𝑡 ∈[0,1]

∈ ·
�� S(𝑘) = (𝑁, 𝑣), 𝐻H− > 𝑘

)

converges as 𝑘 →∞ to the law of the standard Brownian excursion in 𝐶 [0, 1].

Next, we describe the diffusive limit of our random walk. For ℓ, 𝑛 ∈ N and any ordered ℓ-tuple of
points S in R2, enumerated as

S =
(
(𝑠1(1), 𝑠2(1)), (𝑠1 (2), 𝑠2(2)), . . . , (𝑠1(ℓ), 𝑠2(ℓ))

)
and satisfying 𝑠1(𝑖) < 𝑠1(𝑖 + 1) for each 𝑖 ∈ [1, ℓ − 1], we define 𝔍𝑛 (S) to be the linear interpolation
through the diffusively rescaled points

𝔍𝑛 (S) :=
( 1
𝑛
𝑠1(𝑖),

1
𝜎
√
𝑛
𝑠2(𝑖)

) 𝑘
𝑖=1

(4.8)

where𝜎2 := 𝜎2
2 /𝜇 (c.f. Remark 2.9). Consider now the linear interpolation corresponding to our random

walk S(·) up to time 𝐻(𝑁 ,𝑣) :

𝔢S,𝑣
𝑁 := 𝔍𝑁

(
(S(𝑖))𝐻(𝑁,𝑣 )

𝑖=0

)
.

Viewing 𝔢S,𝑣
𝑁 as a random element of 𝐶 [0, 1], Theorem 4.3 below gives a convergence result to the

Brownian excursion on [0, 1].

Theorem 4.3. Fix any 𝛿 ∈ (0, 1/2). Uniformly over 𝑢, 𝑣 ∈ (0, 𝑁1/2−𝛿] ∩ N, we have the following. The
family of conditional laws

Q𝑁
𝑢,𝑣 (·) := P(0,𝑢)

( (
𝔢S,𝑣
𝑁 (𝑡))𝑡 ∈[0,1] ∈ ·

�� 𝐻(𝑁 ,𝑣) < 𝐻H−

)
converges weakly as 𝑁 →∞ to the law of the standard Brownian excursion in (𝐶 [0, 1], ‖ · ‖∞).

Theorems 4.2 and 4.3 are proved in Section 6.3. These results are modifications of a ballot-type
theorem from [17] and an invariance principle from [23], respectively. Those important results were
proved for a much broader class of random walks in very general cones; however, they were only proved
for fixed start points and end points. The two results above have been modified to hold uniformly in
appropriate ranges of start points and end points, which is crucial for our application. We remark that
[31, Section 5] states and proves results that similarly modify the results of [17] and [23]. However,
first, the random walk they consider is symmetric in the y-coordinate, which simplifies their analysis,
and second, their proofs do not always make explicit the aforementioned uniformity, in particular for
the x-coordinate of the end point of their random walk. In Section 6, where our random walk estimates
are proved, we take care to describe explicitly how we modify the proofs in [17] and [23] to handle
uniformity in a broad range of start and end points.

5. Proof of Theorem 1.2 via random walk coupling

Throughout this Section, set x := x(𝑁) = (𝑁, 0) ∈ Z2. Recall the notation set forth in Section 2.5.
In this section, we prove Theorem 2.8, thereby proving Theorem 1.2, via a certain coupling between

Cpts(Γ) under the modified Ising polymer law Px
𝐷 and the effective random walk, where 𝐷 = 𝑄 or H.

This is accomplished as follows.
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In Section 4.1, we described the particular role played by the free Ising polymer model in the half-
space due to its direct connection with an effective random walk. It is then crucial for our analysis to be
able to compare the modified Ising polymers we are interested in with free Ising polymers. In Section 5.1,
we state our needed comparison results, Theorem 5.1 (the main theorem of [32]) and Proposition 5.2,
the latter being an extension of the former that allows us to handle the 𝐷 = 𝑄 case. The key consequence
of these comparisons is that contour events of small probability in one model are still small in the other
model (Corollary 5.3).

In Section 5.2, we prove Proposition 5.2, showing along the way that Γ under the modified Ising
polymer law in D typically has many cone points (Lemma 5.7). In Section 5.3, we prove Proposition 2.5
in a similar way to Proposition 5.2.

In Section 5.4, we show that each (left/right-)irreducible piece Γ (𝑖) has size bounded by (log 𝑁)2,
𝑖 ∈ {𝐿, 1, . . . , 𝑛, 𝑅}, w.h.p. under Px

𝐷 .
In Section 5.5, we show the key result enabling a coupling between Cpts(Γ) and the effective random

walk, Proposition 5.11. This result, which is an expression of entropic repulsion, states that, with high
Px
𝐷-probability, each cone point of Γ stays above height 𝑁 𝛿 in the large interval [𝑁4𝛿 , 𝑁 − 𝑁4𝛿], for

any 𝛿 ∈ (0, 1/4). This is achieved via Corollary 5.3, which reduces the result to the result in the free
polymer model, and Proposition 4.1, which will allow us to reduce the result to an entropic repulsion
result for the random walk conditioned to stay in H.

The entropic repulsion, the shape of the cones Y� and Y�, and the bound |Γ (𝑖) | ≤ (log 𝑁)2
implies that the entire animal stays bounded away from 𝜕H, the boundary of the half-plane, in the strip
[𝑁4𝛿 , 𝑁 − 𝑁4𝛿] × [0,∞). The first consequence of this is that the weight modifications play no role in
this strip; that is, for each cluster C of Γ in this strip, we have Φ𝐷 (C; 𝛾) = Φ(C; 𝛾). Thus, the portion of
Γ contained in this strip behaves like a free Ising polymer, which can be related to the random walk. The
second consequence is that the requirement that 𝛾 stays in D in this strip becomes trivial. In particular,
following the discussion after Equation (4.5), we will be able to couple the cone points of Γ in this strip
with an effective random walk. This is achieved in Section 5.6.

Theorem 2.8 is finally proved in Section 5.7.

5.1. Comparing Ising polymers with modified and unmodified weights

We begin with the main theorem of [32], which states that the partition functions of the Ising polymers
in H, with and without modifications, are equivalent up to a 𝛽-dependent constant.
Theorem 5.1 [32, Theorem 1]. For all 𝛽 > 0 large enough, we have

𝜏𝛽 (x) = − lim
𝑁→∞

1
‖x‖ logGH(x). (5.1)

In fact, there exist constants 𝐶1 := 𝐶1 (𝛽), 𝐶2 := 𝐶2 (𝛽) > 0 such that for all 𝛽 large enough,

𝐶1 G (x
�� 𝛾 ⊂ H) ≤ GH(x) ≤ 𝐶2 G (x

�� 𝛾 ⊂ H). (5.2)

Though we only consider H in this article, [32, Theorem 1] is stated more generally for half-spaces
whose interior normal has argument lying in [−𝜋/4, 3𝜋/4].

The next proposition can be seen as an extension of Theorem 5.1 to address polymers in Q.
Proposition 5.2. For all 𝛽 > 0 sufficiently large, there exists a constant 𝐶 := 𝐶 (𝛽) > 0 such that for
any 𝑁 ∈ N,

𝐶−1 G (x
�� 𝛾 ⊂ H) ≤ G (x

�� 𝛾 ⊂ 𝑄) ≤ 𝐶 G (x
�� 𝛾 ⊂ H), (5.3)

and

𝐶−1 G (x
�� 𝛾 ⊂ 𝑄) ≤ G𝑄 (x) ≤ 𝐶G (x

�� 𝛾 ⊂ 𝑄). (5.4)

The proof of Proposition 5.2 is given in Section 5.2.
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One can readily imply from Equations (5.2) and (5.4) the following, relating Px (· | 𝛾 ⊂ 𝐷) and Px
𝐷 ,

exactly as [32] derived its analogue from Equation (5.2) (see the discussion below Equation (2.7) in that
paper):

Corollary 5.3. Let 𝐷 = H or Q. There exists a constant 𝐶 := 𝐶 (𝛽) > 0 such that for any set of contours
A contained in D,

Px
𝐷 (𝐴) ≤ 𝐶

√
Px (𝐴

�� 𝛾 ⊂ 𝐷) and Px(𝐴
�� 𝛾 ⊂ 𝐷) ≤ 𝐶√

Px
𝐷 (𝐴).

For instance, if 𝑌𝛾 :=
∑

C∩∇𝛾≠∅ Φ
′
𝐷 (C; 𝛾) − Φ′(C; 𝛾) and E[·] denotes expectation under

Px (· | 𝛾 ⊂ 𝐷), then E[𝑒𝑌𝛾 ] is just G𝐷 (x)/G (x | 𝛾 ⊂ 𝐷), and therefore Px
𝐷 (𝐴) = E[1𝐴𝑒

𝑌𝛾 ]/E[𝑒𝑌𝛾 ].
Notice 𝐶−1 ≤ E[𝑒𝑌𝛾 ] ≤ 𝐶 by Equation (5.2) (for 𝐷 = H) and Equation (5.4) (for 𝐷 = 𝑄). By Cauchy–
Schwarz, Px

𝐷 (𝐴) ≤ 𝐶
√

Px (𝐴 | 𝛾 ⊂ 𝐷)
√

E[𝑒2𝑌𝛾 ], and the last expectation is uniformly bounded (as
E[𝑒2𝑌𝛾 ] = G̃𝐷 (x)/G (x | 𝛾 ⊂ 𝐷), where G̃𝐷 (x) is defined w.r.t. Φ̃′

𝐷 (C; 𝛾) := 2Φ′
𝐷 (C; 𝛾) −Φ′(C; 𝛾)).

A particular consequence of Corollary 5.3 is that contour events that hold with probability tending
to 1 in the unmodified models (which are much easier to study) still hold with probability tending to 1
in the modified models. The most significant application of this fact is in the proof of entropic repulsion
under Px

𝑄 (·) (Proposition 5.11), which, as explained at the start of this Section, is a crucial step towards
the random walk coupling achieved in Section 5.6.

Remark 5.4. In Corollary 5.3, we specified that the event A should be a set of contours. The reason this
was emphasized is that in Equation (2.15) we extended the measure Px

𝐷 from contours to animals, but
Corollary 5.3 does not hold for general animal events A. Indeed, it is not true that small animal events
in one model stay small in another model, as the ratio |𝑞(Γ)/𝑞𝐷 (Γ) | is not bounded away from 0 nor
∞ (as there are no such bounds on |Φ′

𝑄 (C; 𝛾) |/|Φ′(C; 𝛾) | in the generality of weight modifications that
we must consider).

5.2. Proof of Proposition 5.2

We will need two auxiliary lemmas. The first, Lemma 5.5, states that in any model where at least
two cone points exist, the partition function is dominated by animals whose first (left) and last (right)
irreducible pieces have size of order 1.

Lemma 5.5. Let D be either Q or H. For any 𝜖 ∈ (0, 1), there exists 𝐾𝜖 := 𝐾𝜖 ,𝛽 > 0 such that

G𝐷 (x
�� |Cpts(Γ) | ≥ 2, max(|Γ (𝐿) |, |Γ (𝑅) |) > 𝐾𝜖 ) ≤ 𝜖GH (x) (5.5)

and

G (x
�� 𝛾 ⊂ 𝐷, |Cpts(Γ) | ≥ 2, max(|Γ (𝐿) |, |Γ (𝑅) |) > 𝐾𝜖 ) ≤ 𝜖G (x

�� 𝛾 ⊂ H). (5.6)

Remark 5.6. Observe that once Proposition 5.2 is proved, the domain H in the right-hand side of
Equations (5.5) and (5.6) may be replaced by D, for D either Q or H.

The second auxiliary result, Lemma 5.7, extends Lemma 2.11, and thus Proposition 2.12 thanks to
Remark 2.13, to the modified models on Q and H.

Lemma 5.7. Let D be either Q or H. Fix any 𝜖, 𝛿 ∈ (0, 1). There exist positive constants 𝛽0, 𝛿0 and
𝜈0 > 0 such that for all 𝛽 ≥ 𝛽0, there exists 𝐶 := 𝐶 (𝛽) > 0 such that the following hold uniformly over
all 𝑁 ∈ N and 𝑟 ≥ 1 + 𝜖:

G𝐷
(
x

�� |𝛾 | ≥ 𝑟 ‖x‖1
)
≤ 𝐶𝑒−𝜈0𝛽𝑟 ‖x‖1G𝐷 (x) (5.7)

G𝐷
(
x

�� |Cpts(𝛾) | < 2𝛿0‖x‖1
)
≤ 𝐶𝑒−𝜈0𝛽 ‖x‖1G𝐷 (x). (5.8)
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In particular, there exists 𝜈 > 0 such that for all 𝛽 ≥ 𝛽0, there exists 𝐶 := 𝐶 (𝛽) > 0 such that the
following holds uniformly over all 𝑁 ∈ N:

G𝐷 (x
�� |Cpts(Γ) | < 𝛿0‖x‖1) ≤ 𝐶𝑒−𝜈𝛽 ‖x‖1G𝐷 (x). (5.9)

We postpone the proof of Lemma 5.5 to the end of the subsection. We prove Proposition 5.2 and
Lemma 5.7 in tandem, proceeding as follows:

(a) We begin by proving Lemma 5.7 for 𝐷 = H.
(b) We then prove the first part of Proposition 5.2 (Equation (5.3)), as well as its analog for GH, that is,

𝐶−1GH (x) ≤ GH (x
�� 𝛾 ⊂ 𝑄) ≤ 𝐶GH(x). (5.10)

(c) These results are then used to prove Lemma 5.7 for 𝐷 = 𝑄.
(d) Finally, we prove Equation (5.4), thereby completing the proof of Proposition 5.2.

Proof of Part (a). For each bound, we will first apply Lemma 2.11, then Theorem 5.1. Recall that
Lemma 2.11 states that the analogous bounds to Equation (5.7) and Equation (5.8) hold for G (x).
Equation (5.1) implies that logG (x) and logG (x

�� 𝛾 ⊂ H) have the same leading order; thus, for some
𝜈′0 ∈ (0, 𝜈0], we have

G
(
x

�� 𝛾 ⊂ H, |𝛾 | ≥ 𝑟 ‖x‖1
)
≤ G

(
x

�� |𝛾 | ≥ 𝑟 ‖x‖1
)
≤ 𝐶𝑒−𝜈′0𝛽𝑟 ‖x‖1G (x

�� 𝛾 ⊂ H), and

G
(
x

�� 𝛾 ⊂ H, Cpts(𝛾) < 2𝛿0‖x‖1
)
≤ G

(
x

�� |Cpts(𝛾) | < 2𝛿0‖x‖1
)
≤ 𝐶𝑒−𝜈′0𝛽 ‖x‖1G (x

�� 𝛾 ⊂ H).
Equation (5.7) and Equation (5.8) for 𝐷 = H now follow from Corollary 5.3, and Equation (5.9) from
Remark 2.13. �

Proof of Part (b). The upper bounds in both Equations (5.3) and (5.10) hold with 𝐶 = 1, since 𝑄 ⊂ H.
We now show the lower bound for Equation (5.10). The lower bound in Equation (5.3) is obtained

simply by replacing 𝑞H with q in what follows. By Lemmas 5.5 and 5.7 (for 𝐷 = H), we have the
following: for any 𝜖 ∈ (0, 1), there exists 𝐾 := 𝐾 (𝛽, 𝜖) > 0 such that for ‖x‖1 large,

(1 − 𝜖)GH(x) ≤ GH
(
x

�� |Cpts(Γ) | ≥ 𝛿0‖x‖1, max(|Γ (𝐿) |, |Γ (𝑅) |) ≤ 𝐾
)
. (5.11)

Now, using the weight factorization of 𝑞H(Γ) in Equation (2.18), we may express the right-hand side of
the above (for 𝑁 = ‖x‖1 ≥ 2/𝛿0) as∑

Γ (𝐿) ∈AL
𝛾 (𝐿) ⊂H

∑
Γ (𝑅) ∈AR
𝛾 (𝑅) ⊂H

𝑞H(Γ (𝐿) ) 𝑞H(Γ (𝑅) )1{ |Γ (𝐿) |, |Γ (𝑅) | ≤𝐾 }

×
∑

𝑛≥𝛿0 ‖x‖1

∑
Γ (1) ,...,Γ (𝑛) ∈A

𝑛∏
𝑖=1

𝑞H(Γ (𝑖) )1{Γ (1) ◦·· ·◦Γ (𝑛) ∈PH (X(Γ (𝐿) ) ,x−X(Γ (𝑅) )) } .

For any u ∈ Y�, let 𝛾 (𝐿) (u) denote an arbitrary up-right path from 0 to u, and let 𝛾 (𝑅) (u) denote an
arbitrary down-right path from x− u to x (if one exists). Since the backwards cone of Γ (𝐿) must contain
the origin and the forwards cone of x − Γ (𝑅) must contain x, it follows that

𝛾 (𝐿) (X(Γ (𝐿) )) ◦ 𝛾1 ◦ · · · ◦ 𝛾𝑚 ◦ 𝛾 (𝑅) (X(Γ (𝑅) )) ⊂ 𝑄

for any collection {Γ (𝐿) , Γ (1) , . . . , Γ (𝑚) , Γ (𝑅) } contributing to a nonzero term in the second-to-last
display. In particular, for any Γ (𝐿) ∈ AL and Γ (𝑅) ∈ AR such that {|Γ (𝐿) |, |Γ (𝑅) | ≤ 𝐾}, we have
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𝑞H(𝛾 (𝐿) (X(Γ (𝐿) )))𝑞H(𝛾 (𝑅) (X(Γ (𝑅) )))

×
∑
𝑚≥1

∑
Γ (1) ,...,Γ (𝑚) ∈A

𝑚∏
𝑖=1

𝑞H(Γ (𝑖) )1{Γ (1) ◦·· ·◦Γ (𝑚) ∈PH (X(Γ (𝐿) ) ,x−X(Γ (𝑅) )) } ≤ GH(x
�� 𝛾 ⊂ 𝑄). (5.12)

Since 𝑞H(Γ (𝐿) ) ≤ 𝑞H(𝛾 (𝐿) (X(Γ (𝐿) ))) and 𝑞H(Γ (𝑅) ) ≤ 𝑞H(𝛾 (𝑅) (X(Γ (𝑅) ))), it follows from the last
three displays that the right-hand side of Equation (5.11) is bounded above by

∑
Γ (𝐿) ∈AL
𝛾 (𝐿) ⊂H

𝑞H(Γ (𝐿) )
𝑞H (𝛾 (𝐿) (X(Γ (𝐿) )))

1{ |Γ (𝐿) | ≤𝐾 }

∑
Γ (𝑅) ∈AR
𝛾 (𝑅) ⊂H

𝑞H(Γ (𝑅) )
𝑞H(𝛾 (𝑅) (X(Γ (𝑅) )))

1{ |Γ (𝑅) | ≤𝐾 }GH(x
�� 𝛾 ⊂ 𝑄)

≤
( ∑

u∈Z2:‖u‖1≤𝐾
𝑒𝛽 ‖u‖1GH(u)

)2
GH(x

�� 𝛾 ⊂ 𝑄).
The prefactor in the last display is a constant depending only 𝐾 := 𝐾 (𝛽, 𝜖), finishing the proof. �

Proof of Part (c). In Part (a), we proved Equations (5.7) and (5.8) for 𝐷 = H. Bounding below the
left-hand sides of these equations by adding the restriction 𝛾 ⊂ 𝑄, and giving an upper bound on the
right-hand sides by using Equation (5.10) to replace GH(x) by 𝐶GH (x

�� 𝛾 ⊂ 𝑄) yields the same results
for GH(x

�� 𝛾 ⊂ 𝑄, ·):
GH

(
x

�� 𝛾 ⊂ 𝑄, |𝛾 | ≥ 1.1‖x‖1
)
≤ 𝐶𝑒−𝜈0𝛽 ‖x‖1GH(x

�� 𝛾 ⊂ 𝑄), and (5.13)

GH
(
x

�� 𝛾 ⊂ 𝑄, |Cpts(𝛾) | < 2𝛿0‖x‖1
)
≤ 𝐶𝑒−𝜈0𝛽 ‖x‖1GH(x

�� 𝛾 ⊂ 𝑄) (5.14)

uniformly in 𝛽 large enough and x. Similar to Equation (2.13), we have����log
𝑞H(𝛾)
𝑞𝑄 (𝛾)

���� ≤ 6𝑒−𝜒𝛽 |𝛾 |. (5.15)

Equation (5.7) and Equation (5.8) for 𝐷 = 𝑄 are then simple consequences of Equations (5.13) to (5.15).
Once again, Equation (5.9) for 𝐷 = 𝑄 follows by Remark 2.13. �

Proof of Part (d). Let us start by proving the upper bound in Equation (5.4). As in Equation (5.11),
Lemmas 5.5 and 5.7 (now for 𝐷 = 𝑄) yield the following for any 𝜖 ∈ (0, 1), some 𝐾 := 𝐾 (𝛽, 𝜖) > 0,
and all ‖x‖1 large enough:

G𝑄 (x) ≤ 𝜖GH(x) + G𝑄
(
x

�� |Cpts(Γ) | ≥ 𝛿0‖x‖1, max(|Γ (𝐿) |, |Γ (𝑅) |) ≤ 𝐾
)
. (5.16)

The first term on the right-hand side, 𝜖GH(x), may be bounded by 𝐶0 (𝛽)G (x
�� 𝛾 ⊂ 𝑄) via

Equations (5.2) and (5.3). We now follow the proof of Part (b) to bound the second term: Using the
factorization Equation (2.19) of 𝑞𝑄 (Γ), expanding the right-hand side as in Part (b) and replacing Γ (𝐿)

and Γ (𝑅) by clusterless up-right paths 𝛾 (𝐿) (X(Γ (𝐿) )) and 𝛾 (𝑅) (X(Γ (𝑅) )), we obtain an upper bound by
𝐶1GH (x

�� 𝛾 ⊂ 𝑄), which by Equations (5.2) and (5.3) is bounded above by 𝐶 ′1G (x
�� 𝛾 ⊂ 𝑄).

For the lower bound in Equation (5.4), start instead from G (x
�� 𝛾 ⊂ 𝑄). Bound it from above by

𝐶2G (x
�� 𝛾 ⊂ H) using Equation (5.3), and bound the latter by𝐶 ′2GH(x) using Equation (5.2). Now, use the

inequality in Equation (5.11), expand the right-hand side exactly as in the proceeding display and again
replace Γ (𝐿) and Γ (𝑅) by clusterless, up-right paths. Observe that the bound in Equation (5.12) holds
with the right-hand side replaced with G𝑄 (x), since all animals on the left-hand side are contained in Q
(and therefore the 𝑞H-weights of these animals are equal to the 𝑞𝑄-weights). Following the remainder
of the proof of Part (b), we obtain the lower bound in Equation (5.4). �
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Proof of Lemma 5.5. For any u, v ∈ Z2 and for any set of animals E, define the partition functions

G𝐷 (u → v) :=
∑
𝛾:u→v
𝛾⊂𝐷

𝑞𝐷 (𝛾) and G𝐷 (u → v
�� 𝐸) :=

∑
Γ∈P𝐷 (u,v)∩𝐸

𝑞𝐷 (Γ). (5.17)

We begin with three estimates pertaining to G𝐷 (u → v).
First, we have the analogue of Equation (2.26) for the modified animal weights: For all 𝛽 > 0

sufficiently large, there exists a constant 𝑐′ := 𝑐′(𝛽) > 0 such that for all 𝑘, 𝑁 ≥ 1,∑
Γ∈AL∪AR

𝑒hx ·X(Γ)𝑞𝐷 (Γ)1{ |Γ | ≥𝑘 } ≤ 𝑐′𝑒−𝜈𝑔𝛽𝑘 . (5.18)

This is proved at the end of Appendix B.
Next, below Theorem 3 of [32], it is noted that Equation (5.2) in the current article actually holds if

the end points of the contour are not on the line 𝜕H; that is, for any u, v ∈ H, we have

𝐶1 (𝛽)G (u → v
�� 𝛾 ⊂ H) ≤ GH(u → v) ≤ 𝐶2 (𝛽)G (u → v

�� 𝛾 ⊂ H). (5.19)

Similarly, in Sections 4.1 and 4.2 of [32], it is shown that contours with linear size and many cone points
dominate G (x

�� 𝛾 ⊂ H), and the arguments there yield that the same is true when the end points of the
contour are not on 𝜕H; that is, for any fixed 𝜖 ∈ (0, 1), there exist constants 𝛿0, 𝜈, 𝑐 > 0 such that the
following bounds hold uniformly over 𝛽 > 0 sufficiently large, over u, v ∈ H satisfying v ∈ u+Y�𝛿 \ {0},
and over 𝑟 ≥ 1 + 𝜖 :

G (u → v
�� 𝛾 ⊂ H, |𝛾 | ≥ 𝑟 ‖v − u‖1) ≤ 𝑐𝑒−𝜈𝛽 ‖v−u‖1G (u → v

�� 𝛾 ⊂ H),
and

G (u → v
�� 𝛾 ⊂ H, |Cpts(𝛾) | < 2𝛿0‖v − u‖1) ≤ 𝑐𝑒−𝜈𝛽 ‖v−u‖1G (u → v

�� 𝛾 ⊂ H).
As a consequence of Remark 2.13, we have many cone points for animals Γ as well:

G (u → v
�� 𝛾 ⊂ H, |Cpts(Γ) | < 𝛿0‖v − u‖1) ≤ 𝑐𝑒−𝜈𝛽 ‖v−u‖1G (u → v

�� 𝛾 ⊂ H). (5.20)

Now, towards Equation (5.5), we only show G𝐷 (x
�� |Cpts(Γ) | ≥ 2, |Γ (𝐿) | > 𝐾𝜖 ) ≤ 𝜖G𝐷 (x), as

the analogous bound with Γ (𝑅) instead of Γ (𝐿) follows via the same argument. We begin by using
Equations (2.18) and (2.19) to obtain the expansion

G𝐷 (x
�� |Cpts(Γ) | ≥ 2, |Γ (𝐿) | > 𝐾𝜖 ) =

∑
u∈Y�

x−v∈Y�

∑
Γ (𝐿) ∈AL

Γ (𝐿) ∈P𝐷 (u)

𝑞𝐷 (Γ (𝐿) )1{ |Γ (𝐿) |>𝐾𝜖 }

×
∑

Γ (𝑅) ∈AR
Γ (𝑅) ∈P𝐷 (v,x)

𝑞𝐷 (Γ (𝑅) )
( ∑
𝑛≥1

∑
Γ (1) ,...,Γ (𝑛) ∈A

Γ (1) ◦·· ·◦Γ (𝑛) ∈PH (u,v)

𝑛∏
𝑖=1

𝑞H(Γ (𝑖) )
)
. (5.21)

The above double sum over n and irreducible animals is bounded by GH(u → v), which by Equa-
tion (5.19) is bounded by 𝐶2 (𝛽)G (u → v

�� 𝛾 ⊂ H). It then suffices to show

G (u → v
�� 𝛾 ⊂ H) ≤ 𝐶𝑒hx · (u+x−v)+𝛿𝛽 ( ‖u‖1+‖x−v ‖1)G (x

�� 𝛾 ⊂ H), (5.22)

where 𝐶 := 𝐶 (𝛽) > 0 is a constant and 𝛿 is as in Proposition 4.1. Indeed, substituting the bound in
Equation (5.22) into Equation (5.21), using the exponential tail from Equation (5.18), and recalling
𝛿 < 𝜈𝑔/4 yields
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G𝐷 (x
�� |Cpts(Γ) | ≥ 2, |Γ (𝐿) | > 𝐾𝜖 ) ≤ 𝐶 ′𝑒−

𝜈𝑔
2 𝛽𝐾𝜖 G (x

�� 𝛾 ⊂ H).
By Theorem 5.1, the right-hand side above is bounded by 𝜖GH(x) for 𝐾𝜖 := 𝐾𝜖 ,𝛽 > 0 large enough.

To show Equation (5.22), we use the existence of cone points Equation (5.20) (for which we write
a 1 + 𝑜(1), where the 𝑜(1) term vanishes as ‖v − u‖1 tends to infinity) and the weight factorization in
Equation (2.27):

G
(
u → v

�� 𝛾 ⊂ H)
≤ (1 + 𝑜(1))

∑
u′ ∈u+Y�

x−v−v′ ∈Y�

∑
Γ (𝐿) :u→u′ ∈AL
Γ (𝑅) :v′→v∈AR

𝑞(Γ (𝐿) )𝑞(Γ (𝑅) )
∑
𝑛≥1

∑
Γ (1) ,...,Γ (𝑛) ∈A

𝑛∏
𝑖=1

𝑞(Γ (𝑖) )1{Γ (1) ◦·· ·◦Γ (𝑛) ∈P (u′,v′) }

= (1 + 𝑜(1)) 𝑒−hx · (v−u)
∑

u′ ∈u+Y�
x−v−v′ ∈Y�

∑
Γ (𝐿) :u→u′ ∈AL
Γ (𝑅) :v′→v∈AR

Phx (Γ (𝐿) )Phx (Γ (𝑅) )A(u′, v′)

≤ (1 + 𝑜(1)) 𝑒hx · (u+x−v)G (x
�� 𝛾 ⊂ H)

×
( ∑

u′ ∈u+Y�

∑
Γ (𝐿) :u→u′ ∈AL

Phx (Γ (𝐿) )𝑒𝛿𝛽 ‖u′ ‖1
) ( ∑

x−v−v′ ∈Y�

∑
Γ (𝑅) :v′→v∈AR

Phx (Γ (𝑅) )𝑒𝛿𝛽 ‖x−v′ ‖1
)

≤ (1 + 𝑜(1)) 𝑒hx · (u+x−v)+𝛿𝛽 ( ‖u‖1+‖x−v ‖1)G (x
�� 𝛾 ⊂ H)

×
( ∑
Γ (𝐿) ∈AL

Phx (Γ (𝐿) )𝑒𝛿𝛽 ‖X(Γ (𝐿) ) ‖1
) ( ∑

Γ (𝑅) ∈AR

Phx (Γ (𝑅) )𝑒𝛿𝛽 ‖X(Γ (𝑅) ) ‖1
)
.

In the second-to-last line we used Equations (4.4) and (4.5) and then Proposition 4.1 to bound the
A(u′, v′) term, as well as hx ·x = 𝜏𝛽 (x). In the third line, we used the triangle inequality. Equation (5.22)
then follows from the exponential tails of Γ (𝐿) and Γ (𝑅) in Equation (2.26), again recalling 𝛿 < 𝜈𝑔/4.
This yields Equation (5.5). The proof of Equation (5.6) is identical, just replace the left-hand side of
Equation (5.21) by G (x

�� |Cpts(Γ) | ≥ 2, |Γ (𝐿) | > 𝐾𝜖 , 𝛾 ⊂ 𝐷) and then replace all modified weights 𝑞𝐷
by q. �

5.3. Proof of Proposition 2.5

Fix a direction �𝑢 ∈ S𝑑−1, and let 𝑡−𝑁 ( �𝑢) := (𝑁, 𝑦𝑁 ) ∈ Z2 denote the lattice point whose x-coordinate
is equal to N and is on or below the line span( �𝑢). Let o∗ := (1/2, 1/2) be the origin of the dual lattice
(Z2)∗, and define x𝑁 ( �𝑢) := 𝑡−𝑁 ( �𝑢) + (−1/2, 1/2) ∈ (Z2)∗. Then we have the formula

𝜏sos
𝛽 ( �𝑢) = lim

𝑁→∞
lim

𝑀→∞
− 1
𝛽‖x𝑁 ( �𝑢)‖

logGI𝑁,𝑀 (x𝑁 ( �𝑢)),

where I𝑁 ,𝑀 denotes the strip [0, 𝑁] × [−𝑀, 𝑀]. [20, Theorem 4.16] implies that the surface tension
𝜏𝛽 is equal to the surface tension of the model in I𝑁 ,𝑀 with the same (free) weights 𝑞(𝛾), that is:10

𝜏𝛽 ( �𝑢) = lim
𝑁→∞

lim
𝑀→∞

− 1
𝛽‖x𝑁 ( �𝑢)‖

logG (x𝑁 ( �𝑢)
�� 𝛾 ⊂ I𝑁 ,𝑀 ).

Thus, the proof will be finished if we can compare to exponential order the partition function with
modified weights GI𝑁,𝑀 (x𝑁 ( �𝑢)) and the partition function with free weights G (x𝑁 ( �𝑢)

�� 𝛾 ⊂ I𝑁 ,𝑀 ).

10The proof of that result in the book [20] contains an error, corrected in the appendix to [32]. The mistake had to do with a
part of the result that is irrelevant to us, namely, a part that claims an unchanged surface tension even after modification of the
decoration functions Φ(C; Γ) . In our application of [20, Theorem 4.16], we are not making any modifications to the decoration
functions.
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The proof of this comparison is extremely similar to the proof of Equation (5.4) above, though much
simpler, and so it is omitted for brevity’s sake.11

5.4. Boundedness of the irreducible pieces

The main result of this subsection is Proposition 5.8, which states that each irreducible piece of Γ has
size bounded by (log 𝑁)2 with high Px

𝐷 (·)−probability.
When Γ has at least two cone points, recall from Equation (2.17) that we write Γ (1) , . . . , Γ (𝑛) to

denote the irreducible components of Γ, where 𝑛 := |Cpts(Γ) | − 1.

Proposition 5.8. For 𝐷 = 𝑄 or 𝐷 = H,

Px
𝐷

(
{|Cpts(Γ) | ≥ 2}, {∃𝑖 ∈ {𝐿, 1, . . . , |Cpts(Γ) | − 1, 𝑅} : |Γ (𝑖) | ≥ (log 𝑁)2}

)
= 𝑜(1).

We will need the following two results on the asymptotic size of the partition functions of interest.
Recall the notation for asymptotic relations set out at the start of Section 2.

Lemma 5.9. There exists some 𝐶 := 𝐶 (𝛽) > 0

G (x) ≤ 𝐶𝑒−𝜏𝛽 (x) . (5.23)

Proof. Similar to Equation (2.29), we have from Equation (4.4)

𝑒𝜏𝛽 (x)G (𝑥
�� |Cpts(Γ) | ≥ 2) =

∑
Γ (𝐿) ∈AL

∑
Γ (𝑅) ∈AR

Phx (Γ (𝐿) )Phx (Γ (𝑅) )PX(Γ (𝐿) ) (𝐻x−X(Γ (𝑅) ) < ∞)

≤
( ∑
Γ (𝐿) ∈AL

Phx (Γ (𝐿) )
) ( ∑

Γ (𝑅) ∈AR

Phx (Γ (𝑅) )
)
.

The above summations are finite by Claim B.1. The lemma then follows from Equation (2.22). �

We remark that a precise first-order asymptotic for G (x) is given in [20, Eq. (4.12.3)]. The asymptotic
can be proved by showing PX(Γ (𝐿) ) (𝐻x−X(Γ (𝑅) ) < ∞) is of order |x|−1/2 via random walk estimates,
similar to the proof of Theorem 4.2.

Lemma 5.10. We have

G (x
�� 𝛾 ⊂ H) � 𝑒−𝜏𝛽 (x)𝑁−3/2, (5.24)

where the implied constant depends on 𝛽.

Proof. Item (1) of Theorem 4.2 shows that for any positive, fixed u and v in N (independent of N), we
have

P(0,𝑢) (𝐻(𝑁 ,𝑣) < 𝐻H−) ∼ C𝜅
𝑉1 (𝑢)𝑉 ′1 (𝑣)

𝑁3/2 . (5.25)

The lower-bound of Equation (5.24) then follows immediately from Proposition 4.1 and Equation
(5.25). �

It is not too hard to show a matching upper bound so that G (x
�� 𝛾 ⊂ H) � 𝑒−𝜏𝛽 (x)𝑁−3/2. Again, we

do not pursue this here as the lower bound suffices.

11A crucial input for the proof of Equation (5.4) was Proposition 2.12, which we proved using Lemma 2.11, cited from the
paper of [32]. Note [32] was written for Ising polymers, so in particular, Property (P4) of the surface tension is always assumed in
that paper. However, we use Proposition 2.5 in order to prove Property (P4) of 𝜏𝛽 , so this might appear to be circular reasoning.
However, Lemma 2.11 is proved in [32] (Equation (4.5) there) without assuming Property (P4), so there is no issue in using it.
No other results from [32] are needed for the proof of Proposition 2.5.
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Proof of Proposition 5.8. Define the set of animals

Pcp,len
𝐷 (x, 𝐾) := {Γ ∈ P𝐷 (x) : |Cpts(Γ) | ≥ 2, max(|Γ (𝐿) |, |Γ (𝑅) |) ≤ 𝐾, |Γ| ≤ 1.1‖x‖1}. (5.26)

In Lemmas 5.5 and 5.7 and Remark 5.6, it was shown that this set of animals dominates Px
𝐷 , that is,

lim
𝐾→∞

lim
𝑁→∞

Px
𝐷

(
Pcp,len
𝐷 (𝑥, 𝐾)

)
= 1.

Therefore, in light of Lemma 5.10, the proof of Proposition 5.8 will be complete upon showing

G𝐷
(
x

�� Pcp,len
𝐷 (x, 𝐾), {∃1 ≤ 𝑖 ≤ |Cpts(Γ) | − 1 : |Γ (𝑖) | ≥ (log 𝑁)2}

)
= 𝑜

(
𝑒−𝜏𝛽 (x)𝑁−3/2) (5.27)

for any fixed K.
Define the sets of animals

AL,𝐾 := {Γ ∈ AL : |Γ| < 𝐾} and AR,𝐾 := {Γ ∈ AR : |Γ| < 𝐾}. (5.28)

Using the factorization of weights (Equation (2.18) and Equation (2.19) for 𝐷 = 𝑄), we have

G𝐷
(
x

�� Pcp,len
𝐷 (x, 𝐾), {∃1 ≤ 𝑖 ≤ |Cpts(Γ) | − 1 : |Γ (𝑖) | ≥ (log 𝑁)2}

)
=

∑
Γ (𝐿) ∈AL,𝐾
𝛾 (𝐿) ⊂𝐷

𝑞𝐷 (Γ (𝐿) )
∑

Γ (𝑅) ∈AR,𝐾
𝛾 (𝑅) ⊂𝐷

𝑞𝐷 (Γ (𝑅) )
∑
𝑛≥1

∑
Γ (1) ,...,Γ (𝑛) ∈A

𝑛∏
𝑖=1

𝑞H(Γ (𝑖) )

× 1{Γ (1) ◦·· ·◦Γ (𝑛) ∈PH (X(Γ (𝐿) ) ,x−X(Γ (𝑅) )) }1{∃1≤𝑘≤𝑛: |Γ (𝑘) | ≥(log 𝑁 )2 }

≤
∑

Γ (𝐿) ∈AL,𝐾
𝛾 (𝐿) ⊂𝐷

𝑞𝐷 (Γ (𝐿) )
∑

Γ (𝑅) ∈AR,𝐾
𝛾 (𝑅) ⊂𝐷

𝑞𝐷 (Γ (𝑅) )

×
∑

u∈X(Γ (𝐿) )+Y�
v∈x−X(Γ (𝑅) )+Y�

GH
(
X(Γ (𝐿) ) → u

)
GH

(
v → x − X(Γ (𝑅) )

) ∑
Γ∈A∩PH (u,v)

𝑞H(Γ)1{ |Γ | ≥(log 𝑁 )2 } .

For any a, b ∈ H, Equations (5.19) and (5.23) along with the trivial bound G (a → b
�� 𝛾 ⊂ H) ≤

G (b − a) implies GH(a → b) ≤ 𝐶𝑒𝜏𝛽 (b−a) for some constant 𝐶 := 𝐶 (𝛽) > 0. Define the weights
𝑊h
H
(Γ) := 𝑒h·X(Γ)𝑞H(Γ), under which Γ has exponential tails by Equation (5.18). Then

G𝐷
(
x

�� Pcp,len
𝐷 (x, 𝐾), {∃1 ≤ 𝑖 ≤ |Cpts(Γ) | − 1 : |Γ (𝑖) | ≥ (log 𝑁)2}

)
≤ 𝐶2

∑
Γ (𝐿) ∈AL,𝐾
𝛾 (𝐿) ⊂𝐷

𝑞𝐷 (Γ (𝐿) )𝑒𝜏𝛽 (X(Γ
(𝐿) ))

∑
Γ (𝑅) ∈AR,𝐾
𝛾 (𝑅) ⊂𝐷

𝑞𝐷 (Γ (𝑅) )𝑒𝜏𝛽 (X(Γ
(𝑅) ))

×
∑

u∈X(Γ (𝐿) )+Y�
v∈x−X(Γ (𝑅) )+Y�

( ∑
Γ∈A

𝑊hv−u
𝐻 (Γ)1{ |Γ | ≥(log 𝑁 )2 }

)

× exp
(
− 𝜏𝛽

(
X(Γ (𝐿) )

)
− 𝜏𝛽

(
u − X(Γ (𝐿) )

)
− 𝜏𝛽 (v − u) − 𝜏𝛽

(
x − X(Γ (𝑅) ) − v

)
− 𝜏𝛽

(
X(Γ (𝑅) )

) )
.

The exponential tails in Equation (5.18) implies both∑
Γ (𝐿) ∈AL,𝐾
𝛾 (𝐿) ⊂𝐷

𝑞𝐷 (Γ (𝐿) )𝑒𝜏𝛽 (X(Γ
(𝐿) )) and

∑
Γ (𝑅) ∈AR,𝐾
𝛾 (𝑅) ⊂𝐷

𝑞𝐷 (Γ (𝑅) )𝑒𝜏𝛽 (X(Γ
(𝑅) ))
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are bounded by a constant 𝐶𝐾 > 0, while∑
Γ∈A

𝑊hv−u
H

(Γ)1{ |Γ | ≥(log 𝑁 )2 } ≤ 𝑐′𝑒−𝜈𝑔𝛽 (log 𝑁 )2
.

These bounds, the strong triangle inequality (Proposition 2.4) and the fact that there are at most
|0 + Y� ∩ x + Y� ∩ Z2 | ≤ (𝑁 + 1)2 possible values for u and for v yield

G𝑄
(
x

�� {∃1 ≤ 𝑖 ≤ |Cpts(Γ) | − 1 : |Γ (𝑖) | ≥ (log 𝑁)2}
)
≤ 𝐶 ′𝐾 (𝑁 + 1)4𝑒−𝜈𝑔𝛽 (log 𝑁 )2

𝑒−𝜏𝛽 (x) ,

for some constant 𝐶 ′𝐾 > 0. Thus, we have Equation (5.27), finishing the proof. �

5.5. Entropic repulsion of the animal

Fix any 𝛿 ∈ (0, 1/4), and define the rectangles ℜ0 (𝛿) := [𝑁4𝛿 , 𝑁 − 𝑁4𝛿] × [0, 2𝑁 𝛿] and
ℜ(𝛿) := [𝑁4𝛿 , 𝑁 − 𝑁4𝛿] × [0, 𝑁 𝛿]. The main result in this subsection is the entropic repulsion result
Proposition 5.11, which states that, under Px

𝐷 (·), the cone points of Γ do not intersect ℜ(𝛿) with prob-
ability tending to 1 as 𝑁 →∞.
Proposition 5.11. Let 𝐷 = 𝑄 or 𝐷 = H. For any 𝛿 ∈ (0, 1/4),

lim
𝑁→∞

Px
𝐷

(
Cpts(Γ) ∩ℜ(𝛿) ≠ ∅

)
= 0.

From the shape of Y� and the (log 𝑁)2 bound on each |Γ (𝑖) | (Proposition 5.8), Proposition 5.11 is
enough to deduce that, with high Px

𝐷-probability, the entire animal (contour and clusters) stays away
from 𝜕H in a slightly shorter rectangle (5.31). We will use this fact in the following subsection to couple
Cpts(Γ) with the random walk. We begin with an analogous result in the free Ising polymer case, where
we can exploit the connection with the random walk and associated estimates, à la Proposition 4.1.
Lemma 5.12. Let 𝐷 = 𝑄 or 𝐷 = H. For any 𝛿 ∈ (0, 1/8),

lim
𝑁→∞

Px (Γ ∩ℜ(𝛿) ≠ ∅
�� 𝛾 ⊂ 𝐷)

= 0.

Proof. In light of Proposition 5.8 and the shape of Y�, it suffices to show that the cone points of Γ avoid
the larger rectangle ℜ0(𝛿) with high probability, that is,

lim
𝑁→∞

Px (𝐸𝛿

�� 𝛾 ⊂ 𝐷)
= 0, where 𝐸𝛿 := {Cpts(Γ) ∩ℜ0(𝛿) ≠ ∅}.

Recall Pcp,len
𝐷 (x, 𝐾) from Equation (5.26), and observe that Lemmas 5.5 and 5.7 and Remark 5.6 imply

lim
𝐾→∞

lim
𝑁→∞

Px (Pcp,len
𝐷 (x, 𝐾)

�� 𝛾 ⊂ 𝐷)
= 1.

From the previous two displays, the proof of the Lemma will be complete upon showing

lim
𝐾→∞

lim
𝑁→∞

Px (Pcp,len
𝐷 (x, 𝐾), 𝐸𝛿

�� 𝛾 ⊂ 𝐷)
= 0. (5.29)

Now, fix 𝐾 ≥ 1 and N large compared to K. Recall the sets AL,𝐾 and AR,𝐾 from Equation (5.28).
Using Equation (2.29), we have

Px (Pcp,len
𝐷 (x, 𝐾), 𝐸𝛿

�� 𝛾 ⊂ 𝐷)
≤ 1

G (x
�� 𝛾 ⊂ 𝐷) 𝑒−𝜏𝛽 (x)

∑
Γ (𝐿) ∈AL,𝐾
𝛾 (𝐿) ⊂𝐷

Phx (Γ (𝐿) )
∑

Γ (𝑅) ∈AR,𝐾
𝛾 (𝑅) ⊂𝐷

Phx (Γ (𝑅) ) A
(
X(Γ (𝐿) ), x − X(Γ (𝑅) ); 𝐸𝛿

)
.
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Using Equation (5.3), Equation (4.5) and Proposition 4.1, we may bound from above the right-hand side
of the previous display

𝐶−1
∑

Γ (𝐿) ∈AL,𝐾
𝛾 (𝐿) ⊂𝐷

Phx (Γ (𝐿) )𝑒𝛿𝛽 ‖X(Γ (𝐿) ) ‖1
∑

Γ (𝑅) ∈AR,𝐾
𝛾 (𝑅) ⊂𝐷

Phx (Γ (𝑅) )𝑒𝛿𝛽 ‖X(Γ (𝑅) ) ‖1
A+ (

X(Γ (𝐿) ), x − X(Γ (𝑅) ); 𝐸𝛿
)

P𝑋 (Γ (𝐿) ) (𝐻x−X(Γ (𝑅) ) > 𝐻H−)

= 𝐶−1
∑

Γ (𝐿) ∈AL,𝐾
𝛾 (𝐿) ⊂𝐷

Phx (Γ (𝐿) )𝑒𝛿𝛽 ‖X(Γ (𝐿) ) ‖1
∑

Γ (𝑅) ∈AR,𝐾
𝛾 (𝑅) ⊂𝐷

Phx (Γ (𝑅) )𝑒𝛿𝛽 ‖X(Γ (𝑅) ) ‖1

× PX(Γ (𝐿) )
(
∃𝑖 < 𝐻x−X(Γ (𝑅) ) : S1(𝑖) ∈ [𝑁4𝛿 , 𝑁 − 𝑁4𝛿], S2(𝑖) ∈ [0, 2𝑁 𝛿]

�� 𝐻x−X(Γ (𝑅) ) < 𝐻H−
)
.

(5.30)

The ballot-type result Theorem 4.2(1) and standard random walk estimates yield

lim
𝑁→∞

PX(Γ (𝐿) )
(
∃𝑖 < 𝐻x−X(Γ (𝑅) ) : S1(𝑖) ∈ [𝑁4𝛿 , 𝑁 − 𝑁4𝛿], S2(𝑖) ∈ [0, 2𝑁 𝛿]

�� 𝐻x−X(Γ (𝑅) ) < 𝐻H−
)
= 0

uniformly over Γ (𝐿) ∈ AL,𝐾 and Γ (𝑅) ∈ AR,𝐾 . On the other hand, the exponential tails in Equation (2.26)
and the relation 4𝛿 < 𝜈𝑔 yield

𝐶−1
( ∑
Γ (𝐿) ∈AL,𝐾
𝛾 (𝐿) ⊂𝑄

Phx (Γ (𝐿) )𝑒𝛿𝛽‖X(Γ (𝐿) ) ‖1
) ( ∑

Γ (𝑅) ∈AR,𝐾
𝛾 (𝑅) ⊂𝑄

Phx (Γ (𝑅) )𝑒𝛿𝛽‖X(Γ (𝑅) ) ‖1
)
≤ 𝐶𝐾 ,

for some constant 𝐶𝐾 := 𝐶𝐾,𝛽 > 0. Taking the limit as N, then 𝐾 → ∞ in Equation (5.30) yields
Equation (5.29). �

Proof of Proposition 5.11. Lemma 5.12 and Corollary 5.3 imply that 𝛾 under Px
𝐷 (·) stays above ℜ(𝛿).

Of course, all cone points of Γ lie on 𝛾, so we are done. �

5.6. Coupling with the effective random walk

Let 𝐷 = 𝑄 or 𝐷 = H, and fix 𝛿 ∈ (0, 1/8). The entropic repulsion result, Proposition 5.11, sets the stage
for a coupling between the cone points of Γ lying in the strip S𝑁 4𝛿 ,𝑁−𝑁 4𝛿 := [𝑁4𝛿 , 𝑁 − 𝑁4𝛿] × [0,∞)
and the random walk S(·) defined in Section 4.1. Before defining this coupling explicitly, we set up
some notation.

For u, v ∈ Z2, define

P 𝛿
𝐷,∗(u, v)

:=
{
Γ ∈ P𝐷 (u, v) : |Cpts(Γ) | ≥ 2, max

𝑖∈{𝐿,1,..., |Cpts(Γ) |−1,𝑅}
|Γ (𝑖) | < (log 𝑁)2, Cpts(Γ) ∩ℜ(𝛿) = ∅

}
,

where, as usual, we write P 𝛿
𝐷,∗(x) := P 𝛿

𝐷,∗(0, x). Observe that the last two conditions in the definition,
along with the shape of Y�, ensure that

Γ ∩ ([𝑁4𝛿 , 𝑁 − 𝑁4𝛿] × [0, 𝑁 𝛿/2]) = ∅ for all Γ ∈ P∗
𝐷,𝛿 (u, v), (5.31)

where the intersection pertains to both contour and clusters of Γ. From Lemma 5.7 and Propositions 5.8
and 5.11, we know that

Px
𝐷 (P 𝛿

𝐷,∗(x)) = 1 + 𝑜(1). (5.32)
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Define the measure

Px
𝐷,∗(·) := Px

𝐷 (·
�� P 𝛿

𝐷,∗(x)).

For Γ ∈ P 𝛿
𝐷,∗, let 𝜁 (L∗) and 𝜁 (R∗) denote the leftmost and rightmost cone points of Γ in S𝑁 4𝛿 ,𝑁−𝑁 4𝛿 ,

respectively. Note that, since Γ ∈ P 𝛿
𝐷,∗, we have

𝜁 (L∗) ∈ (𝑁4𝛿 , 𝑁4𝛿 + (log 𝑁)2] × [𝑁 𝛿 , 𝑁4𝛿 (log 𝑁)2] (5.33)

and

𝜁 (R∗) ∈ [𝑁 − 𝑁4𝛿 − (log 𝑁)2, 𝑁 − 𝑁4𝛿] × (𝑁 𝛿 , 𝑁4𝛿 (log 𝑁)2] . (5.34)

Let Γ (L∗) ∈ P 𝛿
𝐷,∗(0, 𝜁

(L∗) ) denote the portion of Γ connecting 0 to 𝜁 (L∗) (including all clusters connected
to 𝛾 (L∗) ). Similarly, define Γ (R∗) ∈ P 𝛿

𝐷,∗(𝜁
(R∗) , x) as the portion of Γ connecting 𝜁R∗ to x, and define

Γ∗ ∈ P 𝛿
𝐷,∗(𝜁

(L∗) , 𝜁 (R∗) ) as the portion of Γ connecting 𝜁L∗ to 𝜁R∗ so that

Γ = Γ (L∗) ◦ Γ∗ ◦ Γ (R∗) .

Note that Γ∗ is a concatenation of irreducible animals, each of which are completely contained in Q by
Equation (5.31). Therefore, from Equation (2.18), we have

𝑞𝐷 (Γ) = 𝑞𝐷 (Γ (L∗) )𝑞(Γ∗)𝑞𝐷 (Γ (R∗) ).

Crucially, the 𝑞𝐷-weight of Γ∗ is equal to its (free) q-weight.
For any fixed 𝜁 (L∗) and 𝜁 (R∗) satisfying Equations (5.33) and (5.34), respectively, and for any fixed

animals Γ (L∗) ∈ P𝐷 (0, 𝜁
(L∗) ) and Γ

(R∗) ∈ P𝐷 (𝜁
(R∗)

, x), consider the measure

P𝜁
(L∗)

,𝜁
(R∗)

𝐷,∗ (·) := Px
𝐷,∗

(
·

�� Γ (L∗) = Γ
(L∗)
, Γ (R∗) = Γ

(R∗) )
, (5.35)

which describes the conditional law of Γ∗ and defines a probability measure on the following set of
animals:

P∗,A
𝐷,𝛿

(
𝜁
(L∗)
, 𝜁

(R∗) ) :=
{
Γ
(1) ◦ · · · ◦ Γ (𝑛) ∈ P∗

𝐷,𝛿

(
𝜁
(L∗)
, 𝜁

(R∗) ) : 𝑛 ∈ N, Γ (𝑖) ∈ A for each 𝑖 ∈ [1, 𝑛]
}
.

Note that, for fixed 𝜁 (L∗) and 𝜁 (R∗) , the choice of Γ̄ (L∗) and Γ̄ (R∗) does not change P𝜁
(L∗)

,𝜁
(R∗)

𝐷,∗ (·). In
particular, we have the formula

P𝜁
(L∗)

,𝜁
(R∗)

𝐷,∗ (𝐸) =
∑

Γ∈𝐸∩P∗,𝐴
𝐷,𝛿 (𝜁

(L∗)
,𝜁

(R∗) )

𝑞(Γ) /
∑

Γ∈P∗,𝐴
𝐷,𝛿 (𝜁

(L∗)
,𝜁

(R∗) )

𝑞(Γ). (5.36)

Again, note that only the free weight appears in the above formula.
Lastly, for any 𝑐 > 0, define the half-space H𝑐 := {(𝑥, 𝑦) ∈ R2 : 𝑦 ≥ 𝑐}.

Proposition 5.13. Let 𝐷 = 𝑄 or 𝐷 = H. There exists 𝜈2 > 0 such that for all 𝑁 ∈ N, for all 𝛽 > 0
sufficiently large, and for all 𝜁 (L∗) and 𝜁 (R∗) satisfying Equations (5.33) and (5.34), respectively, if we
let 𝑇 = 𝐻

𝜁
(R∗) and view Cpts(Γ∗) as an ordered tuple (see Equation (2.20)),

���P𝜁
(L∗)

,𝜁
(R∗)

𝐷,∗

(
Cpts(Γ∗) ∈ ·

)
− P

𝜁
(L∗)

( (
S(𝑖)

)𝑇
𝑖=0 ∈ ·

�� 𝑇 < 𝐻H𝑁 𝛿

)���
tv
≤ 𝐶𝑒−𝜈2𝛽 (log 𝑁 )2

for some constant 𝐶 := 𝐶 (𝛽) > 0.
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Proof. Fix 𝜁
(L∗) and 𝜁

(R∗) satisfying Equations (5.33) and (5.34), respectively. Recall V+u,v from
Equation (4.3), and define

V𝛿

𝜁
(L∗)

,𝜁
(R∗) :=

{
(�𝑣1, . . . , �𝑣𝑛) ∈ V+

𝜁
(L∗)

,𝜁
(R∗) : 𝑛 ≥ 1, ‖�𝑣𝑘 ‖1 ≤ (log 𝑁)2

and 𝜁 (L∗) +
𝑘∑
𝑖=1

�𝑣𝑖 ≥ 𝑁 𝛿 ∀𝑘 ∈ [1, 𝑛]
}
,

A𝛿

𝜁
(L∗)

,𝜁
(R∗) :=

{
(Γ (1) , . . . , Γ (𝑛) ) ∈ A𝑛 : 𝑛 ≥ 1,

(
𝑋 (Γ (1) ), . . . , 𝑋 (Γ (𝑛) )

)
∈ V𝛿

𝜁
(L∗)

,𝜁
(R∗)

}
.

Note that the sets A𝛿

𝜁
(L∗)

,𝜁
(R∗) and P∗,A

𝐷,𝛿 (𝜁
(L∗)
, 𝜁

(R∗) ) are in bijection with one another, since for any

(Γ (1) , . . . , Γ (𝑛) ) ∈ A𝛿

𝜁
(L∗)

,𝜁
(R∗) , the animal Γ (1) ◦ · · · ◦ Γ (𝑛) is in P∗,A

𝐷,𝛿 (𝜁
(L∗)
, 𝜁

(R∗) ). The above observa-

tions, along with Equation (2.27) (where we substitute y := x and use that Phx (Γ (𝑖) ) = 𝑒hx ·X(Γ (𝑖) )𝑞(Γ (𝑖) ))
yields the following:

∑
Γ∈P∗,𝐴

𝐷,𝛿 (𝜁
(L∗)

,𝜁
(R∗) )

𝑞(Γ) = 𝑒hx ·
(
𝜁
(L∗) +x−𝜁 (R∗)

) ∑
𝑛≥1

∑
(Γ (1) ,...,Γ (𝑛) ) ∈A𝛿

𝜁
(L∗)

,𝜁
(R∗)

𝑛∏
𝑖=1
Phx (Γ (𝑖) )

= 𝑒hx ·
(
𝜁
(L∗) +x−𝜁 (R∗)

) ∑
𝑛≥1

∑
( �𝑣1 ,..., �𝑣𝑛) ∈V𝛿

𝜁
(L∗)

,𝜁
(R∗)

𝑛∏
𝑖=1

( ∑
Γ
(𝑖) ∈A

Phx (Γ (𝑖) )1
{X(Γ (𝑖) )=�𝑣𝑖 }

)

= 𝑒hx ·
(
𝜁
(L∗) +x−𝜁 (R∗)

) ∑
𝑛≥1

∑
( �𝑣1 ,..., �𝑣𝑛) ∈V𝛿

𝜁
(L∗)

,𝜁
(R∗)

𝑛∏
𝑖=1
P(S(1) = �𝑣𝑖)

= 𝑒hx ·
(
𝜁
(L∗) +x−𝜁 (R∗)

)
P
𝜁
(L∗)

(
𝐸∗𝛿

)
, (5.37)

where we define the random walk event

𝐸∗𝛿 :=
{
𝐻

𝜁
(R∗) < 𝐻H𝑁 𝛿 , ‖S(𝑖 + 1) − S(𝑖)‖1 ≤ (log 𝑁)2, ∀𝑖 ∈ [0, 𝐻

𝜁
(R∗) − 1]

}
.

A nearly identical calculation but for the numerator of the right-hand side of Equation (5.36) yields the
following: For any 𝑛 ≥ 1 and for any (�𝑣1, . . . , �𝑣𝑛) ∈ (Z2)𝑛,

P𝜁
(L∗)

,𝜁
(R∗)

𝐷,∗

(
Cpts(Γ̄) =

(
𝜁
(L∗)
, 𝜁

(L∗) + 𝑣1, . . . , 𝜁
(L∗) +

𝑛−1∑
𝑖=1

�𝑣𝑖 , 𝜁
(R∗) ))

= P
𝜁
(L∗)

(
𝐻

𝜁
(R∗) = 𝑛 + 1, S(𝑘) = 𝜁 (L∗) +

𝑘∑
𝑖=1

�𝑣𝑖 , ∀𝑘 ∈ [1, 𝑛]
�� 𝐸∗𝛿)1{( �𝑣1 ,..., �𝑣𝑛) ∈V𝛿

𝜁
(L∗)

,𝜁
(R∗) }

.

Thus, the law of Cpts(Γ) under P𝜁
(L∗)

,𝜁
(R∗)

𝐷,∗ is equal to the law of (S(𝑖))
𝐻
𝜁
(R∗)

𝑖=0 under P
𝜁
(L∗) (·

�� 𝐸∗𝛿). Now,
observe that Theorem 4.2 along with shift invariance of the random walk (to shift the walk downwards
by 𝑁 𝛿) give the following estimate, which holds uniformly over our ranges of 𝜁 (L∗) and 𝜁 (R∗) :

P
𝜁
(L∗)

(
𝐻

𝜁
(R∗) < 𝐻H𝑁 𝛿

)
= P

𝜁
(L∗) −(0,𝑁 𝛿 )

(
𝐻

𝜁
(R∗) −(0,𝑁 𝛿 ) < 𝐻H−

)
� 𝑁−3/2.
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Exponential tails of the random walk increments (4.2) and the above estimate then imply that

P
𝜁
(L∗)

(
𝐸∗𝛿

�� 𝐻
𝜁
(R∗) < 𝐻H𝑁 𝛿

)
≥ 1 − 𝐶𝑒−𝜈𝛽 (log 𝑁 )2

(5.38)

for some constant 𝜈 > 0 independent of 𝛽 and a constant 𝐶 := 𝐶 (𝛽) > 0, finishing the proof. �

5.7. Proof of Theorem 2.8

We see from the shape of the cone Y� and the restriction on |Γ (𝑖) | that for all Γ ∈ P∗
𝐷,𝛿 (x),

1
√
𝑁

max
𝑥∈[0,𝑁 ]

|𝛾(𝑥) − 𝛾(𝑥) | ≤ 2(log 𝑁)2
√
𝑁

.

In addition to Equation (5.32), this tells us that it suffices to show 𝔍𝑁 (Cpts(Γ)) under Px
𝐷,∗(·) converges

weakly to a Brownian excursion. Now, we have the following on P∗
𝐷,𝛿 :

sup{𝑦 : ∃𝑥 ∈ Z s.t. (𝑥, 𝑦) ∈ 𝛾 (L∗) }, sup{𝑦 : ∃𝑥 ∈ Z s.t. (𝑥, 𝑦) ∈ 𝛾 (R∗) } ≤ 𝑁4𝛿 (log 𝑁)2 (5.39)

as well as the bounds in Equations (5.33) and (5.34). These bounds imply that Γ (L∗) and Γ (R∗) do not
impact the diffusive scaling limit of Cpts(Γ). Thus, recalling the linear interpolation 𝔍𝑁 from Equa-

tion (4.8), it suffices to show 𝔍𝑁 (Cpts(Γ∗)) under law P𝜁
(L∗)

,𝜁
(R∗)

𝐷,∗ (·) converges weakly to a Brownian

excursion, uniformly in 𝜁 (L∗) and 𝜁 (R∗) satisfying Equations (5.33) and (5.34). But this is an immediate
consequence of Proposition 5.13, the shift invariance of the random walk and Theorem 4.3.

This concludes the proof of Theorem 2.8 and hence also Theorem 1.2.

6. Random walks in a half-space

This section is devoted to the proofs of Theorems 4.2 and 4.3 via the analysis of random walks in a
half-space.

As mentioned after Theorem 4.3, we seek to extend many of the results from [17] and [23]. These
papers are written for random walks whose coordinates are uncorrelated. Though S(·) may not have
this property, we can obtain such a random walk by rotating – this is done in Section 6.3.

As such, we must consider random walks in general half-spaces. Throughout the rest of this section,
fix a unit vector �𝑛 ∈ S1, and consider the half-space through the origin with inward normal �𝑛, and call
this space H�𝑛 ⊂ R2. Let �𝑛⊥ ∈ S1 be a unit vector orthogonal to �𝑛 (the choice between �𝑛 and −�𝑛 does not
matter). We will think of our random walk in terms of coordinates with respect to �𝑛 and �𝑛⊥ instead of e1
and e2. Let 𝑆(·) denote a general 2D random walk with step distribution 𝑋 = (𝑋1, 𝑋2) such that E𝑋 = �0,
Cov 𝑋 = Id, and P(|𝑋 | > 𝑚) ≤ 𝑐1𝑒

−𝑐2𝑚 for some constants 𝑐1, 𝑐2 > 0 and for all 𝑚 ≥ 1. Additionally,
we impose a lattice assumption: Assume that X takes values on a lattice L that is a nondegenerate linear
transformation of Z2 and that the distribution of X is strongly aperiodic; that is, for each u ∈ L, L is the
smallest subgroup of Z2 containing

{v : v = u + w for some w such that P(𝑋 = w) > 0}.

The theory of random walks confined to a half-space is intimately related to the theory of harmonic
functions for processes killed upon exiting a half-space, and so we recall the relevant facts from this
theory before proceeding.

6.1. Harmonic functions for processes in a half-space

Our domain of interest is a relatively simple one, the half-space H�𝑛, and we are concerned with the
harmonic functions of the Brownian motion and of the random walk 𝑆(·) killed upon exit from H�𝑛.
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The harmonic function of the Brownian motion killed at 𝜕H�𝑛 is given by the minimal (up to
a constant), strictly positive harmonic function on H�𝑛 with zero boundary conditions. For us, such
functions take a very explicit form. Consider the rotation that sends �𝑛 ↦→ e2, and thus H�𝑛 to H. This
is a conformal mapping that induces a bijection between positive harmonic functions in H that vanish
on 𝜕H to positive harmonic functions in H�𝑛 that vanish on 𝜕H�𝑛. Since12 every such harmonic function
in H takes the form ℎ(v) = 𝑐v · e2, for some constant 𝑐 > 0, it follows that every harmonic h function
in H�𝑛 takes the form ℎ(v) = 𝑐v · �𝑛. In particular, the harmonic function only depends on the projection
of v onto �𝑛. In what follows, we take 𝑐 = 1 and define

𝑢(v) := v · �𝑛.

We refer to [15] for a general discussion of the harmonic function of the Brownian motion in cones.
One of the many achievements of [17] is the construction of a positive harmonic function V for a

wide class of random walks 𝑆(·) killed upon exit from K, that is, V solves the equation13

Ev [𝑉 (𝑆(1)), 𝐻𝐾 𝑐 > 1] = 𝑉 (v), for v ∈ 𝐾,

where K is an element of a wide class of cones.14 Many of their limit theorems that we wish to extend
were stated in terms of V. The function V was constructed as

𝑉 (v) = lim
𝑛→∞
Ev [ℎ(𝑆(𝑛)), 𝐻𝐾 𝑐 > 𝑛],

where h is a choice of the harmonic function for Brownian motion killed at 𝜕𝐾 . For 𝐾 := 𝐻H �𝑛 , ℎ := 𝑢,
and so we see

𝑉 (v) = 𝑉1(v · �𝑛), for all v ∈ H�𝑛, (6.1)

where 𝑉1 := 𝑉 �𝑛
1 is the unique positive harmonic function for the one-dimensional random walk �𝑛 · 𝑆(·)

killed at leaving (0,∞) satisfying

lim
𝑎→∞

𝑉1(𝑎)
𝑎

= 1.

The uniqueness of 𝑉1, as well as an exact formula for 𝑉1, was established by Doney in [22].

6.2. Limit theorems for general random walks in a half-space

The following two results, Propositions 6.1 and 6.2, are modifications of a ballot-type theorem from [17]
and an invariance principle from [23], respectively. We’ll write 𝔢(·) to denote the standard Brownian
excursion on [0, 1].

Proposition 6.1 (Modification of [17, Theorem 6]). Fix any 𝐴 > 0 and 𝛿 ∈ (0, 1/2). Then there exists
a constant 𝐶1 > 0 such that, uniformly over sequences 𝑎𝑘 , 𝑏𝑘 and 𝑢𝑘 satisfying

𝑎𝑘 ∈ [−𝐴
√
𝑘, 𝐴

√
𝑘] , 𝑎𝑘√

𝑘
→ 𝑎 ∈ [−𝐴, 𝐴] , 𝑏𝑘 , 𝑢𝑘 ∈ (0, 𝑘1/2−𝛿] , and {𝑢𝑘 �𝑛, 𝑎𝑘 �𝑛⊥ + 𝑏𝑘 } ⊂ L

(6.2)

12See, for example, [2, Theorem 7.22].
13In [17] and [23], the authors consider random walks 𝑆 ( ·) from 𝑆0 = 0 and study the law of (v+𝑆 ( ·)) for v ∈ 𝐾 . In particular,

they write 𝜏v to the hitting time 𝐻
𝑆 (·)
𝐾𝑐 under law Pv.

14See also [18], where such a harmonic function was constructed for a more general class of cones, as well as [19], which
addressed a more general class of random walks.
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we have

P𝑢𝑘 �𝑛

(
𝑆(𝑘) = 𝑎𝑘 �𝑛⊥ + 𝑏𝑘 �𝑛, 𝐻𝑆

H−�𝑛
> 𝑘

)
∼ 𝐶1𝜅

2𝑉1(𝑢𝑘 )𝑉 ′1 (𝑏𝑘 )
𝑘2 𝑒−𝑎

2/2, (6.3)

where 𝑉 ′1 is the positive harmonic function for −�𝑛 · 𝑆2 (·) killed upon leaving (0,∞).

Proposition 6.2 (Modification of [23, Theorem 6]). Fix any 𝛿 ∈ (0, 1/2). Uniformly over sequences

𝑎𝑘 ∈ [−𝐴
√
𝑘, 𝐴

√
𝑘] and 𝑏𝑘 , 𝑢𝑘 ∈ (0, 𝑘1/2−𝛿] and {𝑢𝑘 �𝑛, 𝑎𝑘 �𝑛⊥ + 𝑏𝑘 } ⊂ L, (6.4)

the family of conditional laws

Q𝑘
𝑢𝑘 ,𝑎𝑘 ,𝑏𝑘

(·) := P𝑢𝑘 �𝑛
(( �𝑛 · 𝑆(𝑡𝑘�)

√
𝑘

)
𝑡 ∈[0,1]

∈ ·
�� 𝑆(𝑘) = 𝑎𝑘 �𝑛⊥ + 𝑏𝑘 �𝑛, 𝐻𝑆

H−�𝑛
> 𝑘

)

converge as 𝑘 →∞ to the law of 𝔢(·) in the Skorokhod space (𝐷 [0, 1], ‖ · ‖∞).

For the next result, let S(·) denote a 2D random walk with step distribution X = (X1,X2) satisfying
the same lattice, covariance and tail decay assumptions as X but with mean EX = 𝜇�𝑛⊥ for some 𝜇 > 0.

Proposition 6.3. Fix any 𝛿 ∈ (0, 1/2). There exists a constant C′ := C′(X) > 0 such that, uniformly
over 𝑢, 𝑣 ∈ (0, 𝑁1/2−𝛿] and {𝑢�𝑛, 𝑁 �𝑛⊥ + 𝑣�𝑛} ⊂ L, we have

P𝑢 �𝑛

(
𝐻S

𝑁 �𝑛⊥+𝑣 �𝑛 < 𝐻
S
H−�𝑛

)
∼ C′𝑉1(𝑢)𝑉 ′1 (𝑣)

𝑁3/2 , (6.5)

where 𝑉 ′1 denotes the harmonic function for −�𝑛 · S2 (·) killed upon leaving (0,∞).
Furthermore, if

p𝑁 ,𝐴 := P𝑢 �𝑛
(
𝐻S

𝑁 �𝑛⊥+𝑣 �𝑛 ∈ [𝑁/𝜇 − 𝐴
√
𝑁, 𝑁/𝜇 + 𝐴

√
𝑁]

�� 𝐻S
𝑁 �𝑛⊥+𝑣 �𝑛 < 𝐻

S
H−�𝑛

)
,

then

lim
𝐴→∞

lim inf
𝑁→∞

p𝑁 ,𝐴 = 1. (6.6)

Propositions 6.1 to 6.3 will be proved in Section 6.5. Note that when �𝑛 = e2 (so H�𝑛 = H),
Proposition 6.3 reduces to [31, Theorem 5.1].

6.3. Proof of Theorems 4.2 and 4.3

Recall that the random walk S(·) is a 2D random walk whose step distribution 𝑋 = (𝑋1, 𝑋2) satisfies
E[𝑋] = (𝜇, 0), for some 𝜇 > 0, and exponential tail decay for |𝑋 |. Recall 𝜎2

1 := Var(𝑋1) and
𝜎2

2 := Var(𝑋2).

Proof of Theorem 4.2. Theorem 4.2 follows from Propositions 6.1 to 6.3 by linearly transforming the
random walk S(·) to satisfy the hypotheses of these results. We demonstrate this explicitly for item (2)
of Theorem 4.2; the proof of item (1) follows readily.

Following from [17, Example 2], we derive the aforementioned linear transformation, Consider the
recentered, normalized random walk

S(𝑛) :=
(
𝜎−1

1 0
0 𝜎−1

2

) (
S(𝑛) − 𝑛

(
𝜇
0

))
.
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This is a random walk with increments �̄� := ( �̄�1, �̄�2) of mean 0 such that, for some 𝜌 ∈ (0, 1), we

have 𝐶 := Cov �̄� = E�̄� �̄� 𝑡 =

(
1 𝜌
𝜌 1

)
. Let 𝐶 = 𝑂𝐷𝑂𝑡 . Since C is a covariance matrix, it is positive

semidefinite; however, if C had 0 as an eigenvalue, then that would imply the random walk lives on a line,
which we know is not true as X can be e1 or e1 + e2 with positive probability. So, C is positive-definite.
Consider the transformation matrix 𝑀 := 𝑂𝑡

√
𝐷−1𝑂. Then

Cov(𝑀𝑋) = E[𝑀�̄� �̄� 𝑡𝑀 𝑡 ] = Id.

To be explicit, straightforward calculations reveal that if 𝜃 ∈ [−𝜋, 𝜋] solves sin 2𝜃 = 𝜌, then we may take

𝑀 =
1√

1 − 𝜌2

(
cos 𝜃 − sin 𝜃
− sin 𝜃 cos 𝜃

)
,

though we will not need this explicit form.
Now, observe that �𝑛 := 𝑀−1e2 has norm 1 (explicitly, �𝑛 = (sin 𝜃, cos 𝜃)). Using the fact that 𝑀−1 is

symmetric and �𝑛 is outward normal to 𝑀H− = H−�𝑛,{
𝐻S
H−
> 𝑘

}
=

{
e𝑡2S(𝑖) > 0, ∀𝑖 ∈ [0, 𝑘]

}
=

{
e𝑡2S(𝑖) > 0, ∀𝑖 ∈ [0, 𝑘]

}
=

{
𝑀S(𝑖) · 𝑀−1e2 > 0, ∀𝑖 ∈ [0, 𝑘]

}
=

{
𝐻𝑀S
H−�𝑛

> 𝑘
}
.

In what follows, we write 𝑀 (𝑎, 𝑏) to denote the matrix applied to the vector 𝑎e1 + 𝑏e2. Then for any
measurable set B,

P(0,𝑢)

(
S(·) ∈ B

�� 𝑆(𝑘) = (𝑁, 𝑣), 𝐻S( ·)
H−

> 𝑘
)

= P(0,𝜎−1
2 𝑢)

(
S(·) ∈ B − 𝑘 (𝜇, 0)

�� S(𝑘) = ( 𝑁−𝑘𝜇𝜎1
, 𝑣
𝜎2
), 𝐻S

H−
> 𝑘

)
= P𝑀 (0,𝑢)

(
𝑀S(·) ∈ 𝑀 (B − 𝑘 (𝜇, 0))

�� 𝑀S(𝑘) = 𝑀 ( 𝑁−𝑘𝜇𝜎1
, 𝑣
𝜎2
), 𝐻𝑀S

H−�𝑛
> 𝑘

)
. (6.7)

Let us now check the hypotheses of Proposition 6.2. Take �𝑛⊥ := 𝑀e1/‖𝑀e1‖. Note that �𝑛⊥ spans
𝜕H−�𝑛 and �𝑛 is the inward normal of 𝑀H = H�𝑛. 𝑀S(·) is a random walk on the lattice L generated by
‖𝑀e1‖�𝑛⊥ and 𝑀e2, the latter of which can be expressed as

𝑀e2 = (𝑀e2 · �𝑛⊥)�𝑛⊥ + �𝑛 =
e𝑡1𝑀

𝑡𝑀e2

‖𝑀e1‖
�𝑛⊥ + �𝑛 =

e𝑡1𝐶
−1e2

‖𝑀e1‖
�𝑛⊥ + �𝑛.

Thus, for any 𝑥, 𝑦 ∈ R,

𝑀 (𝑥, 𝑦) =
𝑥 + 𝑦e𝑡2𝐶

−1e1

‖𝑀e1‖
�𝑛⊥ + 𝑦�𝑛.

For any 𝑘 ∈ [𝑁/𝜇 − 𝐴
√
𝑁, 𝑁/𝜇 + 𝐴

√
𝑁], for A arbitrarily large (but fixed with respect to N), and for

any 𝑢, 𝑣 ∈ [1, 𝑁1/2−𝛿], we see that

𝑢𝑘 �𝑛 := 𝑀 (0, 𝑢) and 𝑎𝑘 �𝑛⊥ + 𝑏𝑘 �𝑛 := 𝑀 ( 𝑁−𝑘𝜇𝜎1
, 𝑣
𝜎2
)

satisfies Equation (6.2). With the hypotheses of Proposition 6.2 satisfied, it follows from Equation (6.7)
and

𝜎−1
2 S2(·) = S(·) · e2 = 𝑀S(·) · 𝑀−1e2 = 𝑀S(·) · �𝑛

that item (2) of Theorem 4.2 is an immediate consequence of Proposition 6.2. �

We now use Theorem 4.2 to prove the Brownian excursion limit.
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Proof of Theorem 4.3. Due to Equation (4.7), it suffices to show that, for each fixed k, uniformly in the
number of steps 𝑘 ∈ [𝑁/𝜇 − 𝐴

√
𝑁, 𝑁𝜇 + 𝐴

√
𝑁], the family of conditional laws

Q𝑁 ,𝑘
𝑢,𝑣 (·) := P(0,𝑢)

( (
𝔢S,𝑣 (𝑡)

)
𝑡 ∈[0,1] ∈ ·

�� S(𝑘) = (𝑁, 𝑣), 𝑘 < 𝐻S
H−

)
converges as 𝑘 →∞ to the law of the standard Brownian excursion on [0, 1]. We begin with Claim 6.4,
which localizes the x-coordinate S1( 𝑗) to an interval of size 𝑜(𝑁), for 𝑗 ∈ [0, 𝑘] and allows us to
compare the linear interpolation 𝔢S,𝑣 with the linear interpolation in item (2) of Theorem 4.2.

Claim 6.4. For any 𝜂 > 0, uniformly over u and v as in the theorem statement, we have

lim
𝑁→∞

P(0,𝑢)

(
max
𝑗∈[0,𝑘 ]

��S1( 𝑗) − 𝜇 𝑗
�� > 𝑁1/2+𝜂 �� S(𝑘) = (𝑁, 𝑣), 𝑘 < 𝐻S

H−

)
= 0. (6.8)

Proof. In light of the bound on P(0,𝑢) (S(𝑘) = (𝑁, 𝑣), 𝑘 < 𝐻S
H−
) provided by Equation (4.6), it suffices

to show

P0

(
max

𝑗∈[0,𝑁 ]

��S1( 𝑗) − 𝜇 𝑗
�� > 𝑁1/2+𝜂

)
= 𝑜(𝑁−3/2). (6.9)

This follows from a union bound over j, the exponential tail bound on the steps of S1(·) from
Equation (4.2), and Hoeffding’s inequality:

P0

(
max

𝑗∈[0,𝑁 ]

��S1( 𝑗) − 𝜇 𝑗
�� > 𝑁1/2+𝜂

)
≤ 𝑁 max

𝑗∈[0,𝑁 ]
P0

(��S1( 𝑗) − 𝜇 𝑗
�� > 𝑁1/2+𝜂

)
≤ 𝑁 max

𝑗∈[0,𝑁 ]
P0

(��S1( 𝑗) − 𝜇 𝑗
�� > 𝑁1/2+𝜂 , max

𝑖∈[0, 𝑗−1]

��S(𝑖) − S(𝑖 + 1)
�� ≤ (log 𝑁)2

)
+ 𝑐′𝑁2𝑒−𝜈𝑔𝛽 (log 𝑁 )2

≤ 2𝑁𝑒−
2𝑁2𝜂
(log 𝑁 )4 + 𝑐′𝑁2𝑒−𝜈𝑔𝛽 (log 𝑁 )2

= 𝑜(𝑁−3/2). �

Note that Theorem 4.2(2) and Claim 6.4 are the equivalents of [31, Eqs. (76) and (77)] for our random
walk. We therefore finish the proof of our Theorem 4.3 exactly as in the proof of [31, Theorem 5.3]. �

6.4. Uniform estimates for the random walk in a half-space

Before proving Propositions 6.1 to 6.3, we need to modify several key estimates of [17] to address the
range of parameters in Equations (6.2) and (6.4). In what follows, we will repeatedly refer back to [17],
explaining how their arguments can be adapted to give the desired uniformity. When stating or citing
the results of [17] and [23], we will for the most part use their notation, pointing out any discrepancies
explicitly.

6.4.1. Needed inputs
The results of [17] are often stated in terms of the dimension d and a positive constant p, where p is
related to the asymptotic behavior of the relevant harmonic function in the cone. For us, 𝑑 = 2 and 𝑝 = 1.

Our first input is an extension of two estimates of [17] uniformly over our range of initial positions.

Proposition 6.5 (Modification of [17, Eq. (7)]). Fix any 𝛿 ∈ (0, 1/2). The following estimate holds
uniformly over all 𝑎𝑘 ∈ R and 𝑏𝑘 ∈ (0, 𝑘1/2−𝛿] such that 𝑎𝑘 �𝑛⊥ + 𝑏𝑘 �𝑛 ∈ L:

P𝑎𝑘 �𝑛⊥+𝑏𝑘 �𝑛
(
𝐻H−�𝑛 > 𝑘

)
∼ 𝜅𝑉1 (𝑏𝑘 )𝑘−1/2. (6.10)
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Proof. Equation (6.10), for 𝑎𝑘 := 𝔞 and 𝑏𝑘 := 𝔟 fixed, is proved in [17] as an immediate consequence
of the lemmas of [17, Sections 3 and 4]. Of these, only [17, Lemma 21] is insufficient for the uniformity
that we require.15 That is, we must show that for all 𝜖 > 0 sufficiently small,

E𝑎𝑘 �𝑛⊥+𝑏𝑘 �𝑛

[
𝑢
(
𝑆(𝜈𝑘 )

)
;𝐻𝑆
H−�𝑛

> 𝜈𝑘 , 𝜈𝑘 ≤ 𝑘1−𝜖
]
= 𝑉 (𝑎𝑘 �𝑛⊥ + 𝑏𝑘 �𝑛) (1 + 𝑜(1)),

where 𝜈𝑘 is defined as the first hitting time of 𝑘1/2−𝜖 �𝑛 + H�𝑛 and 𝑜(1) → 0 as 𝑘 → ∞ uniformly over
the ranges of interest for 𝑎𝑘 and 𝑏𝑘 . Uniformity in 𝑎𝑘 is trivial. Uniformity of 𝑏𝑘 was proven in [31,
Sec. 5.6] (see their Equation (60), and recall that 𝑢(𝑆(𝜈𝑘 )) = 𝑆(𝜈𝑘 ) · �𝑛 and 𝑉 (𝑎𝑘 �𝑛⊥ + 𝑏𝑘 �𝑛) = 𝑉1(𝑏𝑘 )).
Thus, the proof of [17, Eq. (7)] given at the end of [17, Sec. 4] extends to prove our proposition. �

Proposition 6.6 (Modification of [17, Theorem 3]). Uniformly over sequences 𝑎𝑘 and 𝑏𝑘 satisfying
Equation (6.2), the family of measures

P𝑎𝑘 �𝑛⊥+𝑏𝑘 �𝑛

( 𝑆(𝑘)
√
𝑘
∈ ·

�� 𝐻𝑆
H−�𝑛

> 𝑘
)

converges weakly, as k tends to ∞, to the probability measure on H�𝑛 with density given by
𝐻0 (y · �𝑛)𝑒−‖𝑎�𝑛

⊥−y‖2/2dy, where 𝐻0 > 0 is the normalizing constant.

Proof. Let B denote a measurable subset of K. Theorem 3 of [17] gives us

lim
𝑘→∞
P

( 𝑆(𝑘)
√
𝑘
∈ 𝐵 − 𝑎�𝑛⊥

�� 𝐻𝑆
H−�𝑛

> 𝑘
)
= 𝐻0

∫
𝐵−𝑎�𝑛⊥

(y · �𝑛)𝑒−|y |2/2dy = 𝐻0

∫
𝐵
(y · �𝑛)𝑒−|𝑎�𝑛⊥−y |2/2dy.

A simple continuity argument then yields

lim
𝑘→∞
P

( 𝑆(𝑘) + 𝑎𝑘 �𝑛⊥ + 𝑏𝑘 �𝑛√
𝑘

∈ 𝐵
�� 𝐻𝑆
H−�𝑛

> 𝑘
)
= 𝐻0

∫
𝐵
(y · �𝑛)𝑒−|𝑎�𝑛⊥−y |2/2dy

as well. This concludes the proof. �

Proposition 6.7 (Modification of [17, Theorem 5]). Recall 𝐻0 from Proposition 6.6. Then uniformly
over sequences 𝑎𝑘 and 𝑏𝑘 satisfying Equation (6.2),

lim sup
𝑘→∞

sup
y∈H �𝑛

���� 𝑘3/2

𝑉1 (𝑏𝑘 )
P𝑎𝑘 �𝑛⊥+𝑏𝑘 �𝑛

(
𝑆(𝑘) = y, 𝐻𝑆

H−�𝑛
> 𝑘

)
− 𝜅𝐻0

y · �𝑛
√
𝑘
𝑒−‖𝑎

√
𝑘 �𝑛⊥−y‖2/2𝑘

���� = 0. (6.11)

Proof of Proposition 6.7. Below, we adapt the proof of Theorem 5 given in [17, Section 6.2], beginning
as in [17] by splitting 𝐾 := H�𝑛 into three parts:

𝐾 (1) := {y ∈ H�𝑛 : ‖y‖ > 𝑅
√
𝑘}

𝐾 (2) := {y ∈ H�𝑛 : ‖y‖ ≤ 𝑅
√
𝑛, y · �𝑛 ≤ 2𝜖

√
𝑛}

𝐾 (3) := {y ∈ H�𝑛 : ‖y‖ ≤ 𝑅
√
𝑘, y · �𝑛 > 2𝜖

√
𝑘},

for some 𝑅 > 0 and 𝜖 > 0. Below, we let 𝐶 > 0 denote a constant independent of k, y, R and 𝜖 that may
change from line to line. Since

lim
𝑅→∞

lim
𝜖→0

sup
y∈𝐾 (1) ∪𝐾 (2)

y · �𝑛
√
𝑘
𝑒−‖𝑎

√
𝑘 �𝑛⊥−y‖2/2𝑘 = 0.

15It may appear that the constant 𝐶 (𝑥) in [17, Lemma 16] also poses an issue for uniformity, but here 𝐶 (𝑥) can be taken to
be 𝐶 (𝜖 ) for 𝜖 in that lemma, as a consequence of [17, Lemma 14] in our special case of 𝑢 (v) := v · �𝑛.
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Proposition 6.7 will be proved if we can show

lim
𝑅→∞

lim
𝜖→0

lim sup
𝑘→∞

𝑘3/2

𝑉1(𝑏𝑘 )
sup

y∈𝐾 (1) ∪𝐾 (2)
P𝑎𝑘 �𝑛⊥+𝑏𝑘 �𝑛

(
𝑆(𝑘) = y, 𝐻𝑆

H−�𝑛
> 𝑘

)
= 0 (6.12)

and

lim
𝜖→0

lim sup
𝑘→∞

sup
y∈𝐾 (3)

���� 𝑘3/2

𝑉1 (𝑏𝑘 )
P𝑎𝑘 �𝑛⊥+𝑏𝑘 �𝑛

(
𝑆(𝑘) = y, 𝐻H−�𝑛 > 𝑘

)
− 𝜅𝐻0

y · �𝑛
√
𝑘
𝑒−

‖𝑎 �𝑛⊥−y‖2
2𝑘

���� = 0. (6.13)

We begin with the more complicated Equation (6.13).
Set 𝑚 := 𝜖3𝑘�. Our starting point is [17, Eq. (82)], reproduced below:

P𝑎𝑘 �𝑛⊥+𝑏𝑘 �𝑛
(
𝑆(𝑘) = y, 𝐻𝑆

H−�𝑛
> 𝑘

)
=

∑
z∈H �𝑛

P𝑎𝑘 �𝑛⊥+𝑏𝑘 �𝑛
(
𝑆(𝑛 − 𝑚) = z, 𝐻𝑆

H−�𝑛
> 𝑘 − 𝑚

)
P𝑧

(
𝑆(𝑚) = y, 𝐻𝑆

H−�𝑛
> 𝑚

)
. (6.14)

LetH(1)�𝑛 (y) := {z ∈ H�𝑛 : ‖z − y‖ < 𝜖
√
𝑘}. Then we may follow the computations in [17, Eqs. (83),(84)]

exactly, yielding a constant 𝑎 > 0 such that the following inequalities hold uniformly interm 𝑎𝑘 , 𝑏𝑘 and
y such that y · �𝑛 > 2𝜖

√
𝑘:

𝑘3/2

𝑉1(𝑏𝑘 )
∑

z∈H �𝑛\H
(1)
�𝑛 (y)

P𝑎𝑘 �𝑛⊥+𝑏𝑘 �𝑛
(
𝑆(𝑘 − 𝑚) = z, 𝐻𝑆

H−�𝑛
> 𝑘 − 𝑚

)
P𝑧

(
𝑆(𝑚) = y, 𝐻𝑆

H−�𝑛
> 𝑚

)
≤ 𝐶𝜖−3𝑒−

𝑎
𝜖

(6.15)

and

𝑘3/2

𝑉1 (𝑏𝑘 )
∑

z∈H(1)�𝑛 (y)

P𝑎𝑘 �𝑛⊥+𝑏𝑘 �𝑛
(
𝑆(𝑘 − 𝑚) = z, 𝐻𝑆

H−�𝑛
> 𝑘 − 𝑚

)
P𝑧

(
𝑆(𝑚) = y, 𝐻𝑆

H−�𝑛
< 𝑘

)
≤ 𝐶𝜖−3𝑒−

𝑎
𝜖 .

(6.16)

Both right-hand sides go to 0 as 𝜖 → 0, and so we turn our attention to the following expression:

Σ(y) =
∑

z∈H(1)�𝑛 (y)

P𝑎𝑘 �𝑛⊥+𝑏𝑘 �𝑛
(
𝑆(𝑘 − 𝑚) = z, 𝐻𝑆

H−�𝑛
> 𝑘 − 𝑚

)
P𝑧

(
𝑆(𝑚) = y

)
.

The bound in [17, Eq. (85)] also holds uniformly over 𝑎𝑘 , 𝑏𝑘 , and y · �𝑛 > 2𝜖
√
𝑘 , except that there should

be a 𝑉 (x) factor in the 𝑂 (·)-expression of Equation (85) there, where for us x := 𝑎𝑘 �𝑛⊥ + 𝑏𝑘 �𝑛 and so
𝑉 (x) = 𝑉1(𝑏𝑘 ).16 Altogether, we find

Σ(y) = (2𝜋𝑘𝜖3)−1P𝑎𝑘 �𝑛⊥+𝑏𝑘 �𝑛
(
𝐻𝑆
H−�𝑛

> 𝑘 − 𝑚
)
Σ1 (y) +𝑂

(𝑉1(𝑏𝑘 )
𝑘3/2 𝜖−3𝑒−𝑎/𝜖

)
, (6.17)

where

Σ1 (y) :=
∑

z∈H(1)�𝑛 (y)

P𝑎𝑘 �𝑛⊥+𝑏𝑘 �𝑛
(
𝑆(𝑘 − 𝑚) = z

�� 𝐻𝑆
H−�𝑛

> 𝑘 − 𝑚
)
𝑒
− ‖y−z‖2

2𝜖 3𝑘 .

16The 𝑉1 (𝑏𝑘 ) factor comes from an application of Proposition 6.5 in the second line of [17, Eq. (85)]. This term was dropped
in [17] because they consider x fixed, and so 𝑉1 (𝑏𝑘 ) is order 1.
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From Proposition 6.6 and a compactness argument, we have

lim sup
𝑘→∞

sup
y∈𝐾 (3)

����Σ1(y) − 𝐻0

∫
‖ (1−𝜖 3)1/2𝑟−y/

√
𝑘 ‖<𝜖

(r · �𝑛)𝑒−‖𝑎�𝑛⊥−r ‖2/2𝑒−‖ (1−𝜖
3)1/2r−y/

√
𝑘 ‖/2𝜖 3

dr
���� = 0.

We can follow the steps up to the display before [17, Eq. (86)], appealing this time to the uniform
continuity of (r · �𝑛⊥)𝑒−‖𝑎�𝑛⊥−r ‖2/2 (instead of the function 𝑢(r)𝑒−‖𝑟 ‖2/2 as in [17]), to obtain

lim sup
𝑘→∞

sup
y∈𝐾 (3)

����Σ1 (y) − 𝐻0
y · �𝑛
√
𝑘
𝑒−

‖𝑎 �𝑛⊥−y‖2
2𝑘

���� = 𝑜(𝜖3).

Combining the above with Equation (6.17) and applying Proposition 6.5, we find

lim
𝜖→0

lim sup
𝑘→∞

sup
y∈𝐾 (3)

���� 𝑘3/2

𝑉1(𝑏𝑘 )
Σ(y) − 𝜅𝐻0

y · �𝑛
√
𝑘
𝑒−

‖𝑎 �𝑛⊥−y‖2
2𝑘

���� = 0.

Combining this with Equations (6.15) and (6.16) yields Equation (6.13).
The modifications of [17, Section 6.2] required to obtain Equation (6.12) are much simpler than

those needed to obtain Equation (6.13). Equation (6.12) follows very similarly to the proofs of [17, Eqs.
(77) and (81)], and so we just highlight the main differences. The main technical modification comes
from the following, which adapts their Lemmas 27 and 28:

P𝑢 �𝑛
(
𝑆(𝑘) = 𝑎�𝑛⊥ + 𝑏�𝑛, 𝐻𝑆

H−�𝑛
> 𝑘

)
≤ 𝐶 (1 +𝑉1(𝑢))𝑛−

3
2 ∧ 𝐶 (1 +𝑉1(𝑢)) (1 +𝑉1(𝑏))𝑛−2 (6.18)

for all 𝑢, 𝑎, 𝑏 ≥ 0. Indeed, note that Proposition 6.5 gives the bound

P𝑎𝑘 �𝑛⊥+𝑏𝑘 �𝑛
(
𝐻𝑆
H−�𝑛

> 𝑘
)
≤ 𝐶

(
1 +𝑉1(𝑏𝑘 )

)
𝑘−1/2.

Then the proofs of Lemmas 27 and 28 of [17] can be repeated to yield Equation (6.18) (in particular,
the 𝐶 (x) in Lemma 27 can be expressed as 𝐶𝑉1(x · �𝑛), and the 𝐶 (x, y) in Lemma 28 can be expressed
as 𝐶𝑉1 (x · �𝑛)𝑉1(y · �𝑛)). So all 𝐶 (x) terms from the proofs of [17, Eqs. (77),(81)] should be replaced by
𝑉1 (𝑏𝑘 ), after which one finds that their work up to [17, Eq. (81)] yields Equation (6.12). �

6.5. Proofs of Propositions 6.1 to 6.3

Proof of Proposition 6.1. In what follows, all estimates will be uniform over 𝑎𝑘 , 𝑏𝑘 and 𝑢𝑘 satisfying
Equation (6.2).

We begin by following the proof given in [17, Section 6.3]. In particular, we also set 𝑚 = (1 − 𝑡)𝑘�
for some 𝑡 ∈ (0, 1) and write the decomposition

P𝑢𝑘 �𝑛

(
𝑆(𝑘) = 𝑎𝑘 �𝑛⊥ + 𝑏𝑘 �𝑛, 𝐻𝑆

H−�𝑛
> 𝑘

)
=

∑
z∈H �𝑛

P𝑢𝑘 �𝑛

(
𝑆(𝑘 − 𝑚) = z, 𝐻𝑆

H−�𝑛
> 𝑘 − 𝑚

)
P𝑎𝑘 �𝑛⊥+𝑏𝑘 �𝑛

(
𝑆′(𝑚) = z, 𝐻𝑆′

H−�𝑛
> 𝑚

)
, (6.19)

where 𝑆′ is distributed as −𝑆. Letting x := 𝑢𝑘 �𝑛 and y := 𝑎𝑘 �𝑛⊥ + 𝑏𝑘 �𝑛, and recalling Equation (6.18) as
the needed modification of Lemmas 27 and 28 of [17], we can follow the proof given in [17, Sec. 6.3]
up to their Equation (89) to find

lim
𝑅→∞

lim
𝑘→∞

(𝑉1 (𝑢𝑘 )𝑉 ′(𝑏𝑘 )
𝑘2

)−1
Σ1 (𝑅, 𝑘) = 0,
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where

Σ1(𝑅, 𝑘) :=
∑

z∈H �𝑛: |z |>𝑅
√
𝑘

P𝑢𝑘 �𝑛

(
𝑆(𝑘 − 𝑚) = z, 𝐻𝑆

H−�𝑛
> 𝑘 − 𝑚

)
P𝑎𝑘 �𝑛⊥+𝑏𝑘 �𝑛

(
𝑆′(𝑚) = z, 𝐻𝑆′

H−�𝑛
> 𝑚

)
.

We are now in a position to apply Proposition 6.7 to the remainder term

Σ2(𝑅, 𝑘) :=
∑

z∈H �𝑛:‖z‖≤𝑅
√
𝑘

P𝑢𝑘 �𝑛

(
𝑆(𝑘 − 𝑚) = z, 𝐻𝑆

H−�𝑛
> 𝑘 − 𝑚

)
P𝑎𝑘 �𝑛⊥+𝑏𝑘 �𝑛

(
𝑆′(𝑚) = z, 𝐻𝑆′

H−�𝑛
> 𝑚

)

=
𝐻2

0𝜅
2𝑉1 (𝑢𝑘 )𝑉1(𝑏𝑘 )(
𝑡 (1 − 𝑡)

)3/2
𝑘3

∑
z∈H �𝑛:‖z‖≤𝑅

√
𝑘

( z · �𝑛
√
𝑡𝑘

) ( z · �𝑛√
(1 − 𝑡)𝑘

)
𝑒−

|z|2
2𝑡𝑘 −

|𝑎
√
𝑘 �𝑛⊥−z|2

2(1−𝑡 )𝑘

+ 𝑜
(
𝑉1(𝑢𝑘 )𝑉 ′(𝑏𝑘 )𝑘−2)

=
𝐻2

0𝜅
2𝑉1 (𝑢𝑘 )𝑉1(𝑏𝑘 )(
𝑡 (1 − 𝑡)

)3/2
𝑘3

𝑒−
𝑎2
2

∑
z∈H �𝑛:‖z‖≤𝑅

√
𝑘

( z · �𝑛
√
𝑡𝑘

) ( z · �𝑛√
(1 − 𝑡)𝑘

)
𝑒−

(z· �𝑛)2
2𝑡 (1−𝑡 )𝑘 −

(z· �𝑛⊥−𝑡𝑎
√
𝑘)2

2𝑡 (1−𝑡 )𝑘

+ 𝑜
(
𝑉1(𝑢𝑘 )𝑉 ′(𝑏𝑘 )𝑘−2) .

Note that, compared to the first display after [17, Eq. (89)], the only different terms are those in-
volving a and the little-oh terms: This is a consequence of the modifications in our Proposition 6.7
compared to their Theorem 5. From here, we can follow their proof step-by-step until the end, yielding
Equation (6.3). �

Proof of Proposition 6.2. We begin by showing convergence of the finite-dimensional distributions. For
this, it is enough to consider sequences 𝑎𝑘 ∈ [−𝐴

√
𝑘, 𝐴

√
𝑘] such that 𝑎𝑘/

√
𝑘 → 𝑎 and show that, for any

𝑎 ∈ [−𝐴, 𝐴], the finite-dimensional distributions converge to the same limit (as then every subsequence
has a further subsequence converging to the same distribution).

We proceed by following the arguments as in [23, Sec. 4], making adaptions as necessary. We begin
with [23, Eq. (40)], which states that for any 𝑡 ∈ [0, 1) and 𝐵 ∈ 𝜎({𝑆2(𝑖), 𝑖 ≤ 𝑘𝑡}), we have

P𝑢𝑘 �𝑛
(
𝐵

�� 𝑆(𝑘) = 𝑎𝑘 �𝑛⊥ + 𝑏𝑘 �𝑛, 𝐻𝑆
H−�𝑛

> 𝑘
)
= E

[
ℎ (𝑘)𝑢𝑘 ,𝑎𝑘 ,𝑏𝑘

(
𝑡, 𝑋𝑘,𝑡

)
1𝐵

�� 𝐻𝑆
H−�𝑛

> 𝑘𝑡
]
, (6.20)

where 𝑋𝑘,𝑡 := 𝑆(𝑡𝑘�)/
√
𝑘 and

ℎ (𝑘)𝑢𝑘 ,𝑎𝑘 ,𝑏𝑘
(𝑡,w) =

P𝑢𝑘 �𝑛
(
𝐻H−�𝑛 > 𝑘𝑡

)
Pw

√
𝑛

(
𝑆((1 − 𝑡)𝑘) = 𝑎𝑘 �𝑛⊥ + 𝑏𝑘 �𝑛, 𝐻𝑆

H−�𝑛
> (1 − 𝑡)𝑘

)
P𝑢𝑘 �𝑛

(
𝑆(𝑘) = 𝑎𝑘 �𝑛⊥ + 𝑏𝑘 �𝑛, 𝐻𝑆

H−�𝑛
> 𝑘

) .

From Propositions 6.1 and 6.5, we have

P𝑢𝑘 �𝑛
(
𝐻H−�𝑛 > 𝑘𝑡

)
P𝑢𝑘 �𝑛

(
𝑆(𝑘) = 𝑎𝑘 �𝑛⊥ + 𝑏𝑘 �𝑛, 𝐻𝑆

H−�𝑛
> 𝑘

) ∼ 𝑡−1/2𝑒𝑎
2/2

𝐶1𝜅𝑉
′
1 (𝑏𝑘 )

𝑘3/2.

Now, let 𝑆′(·) denote the random walk whose increments are independent copies of −𝑋 . Considering
the walk 𝑆(·) in reversed time, we have

Pw
√
𝑛

(
𝑆((1 − 𝑡)𝑘) = 𝑎𝑘 �𝑛⊥ + 𝑏𝑘 �𝑛, 𝐻𝑆

H−�𝑛
> (1 − 𝑡)𝑘

)
= P𝑎𝑘 �𝑛⊥+𝑏𝑘 �𝑛

(
𝑆′((1 − 𝑡)𝑘) = w

√
𝑘, 𝐻𝑆′

H−�𝑛
> (1 − 𝑡)𝑘

)
.
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Applying Proposition 6.7 yields

lim sup
𝑘→∞

sup
w∈H �𝑛

���� (1 − 𝑡)3/2𝑘3/2

𝑉 ′1 (𝑏𝑘 )
Pw

√
𝑘

(
𝑆((1 − 𝑡)𝑘) = 𝑎𝑘 �𝑛⊥ + 𝑏𝑘 �𝑛, 𝐻𝑆

H−�𝑛
> (1 − 𝑡)𝑘

)

− 𝜅𝐻0
w · �𝑛

(1 − 𝑡)1/2
𝑒−

|𝑎 �𝑛⊥−w|2
2(1−𝑡 )

���� = 0

uniformly over 𝑎𝑘 and 𝑏𝑘 . Altogether, we find

ℎ (𝑘)𝑢𝑘 ,𝑎𝑘 ,𝑏𝑘
(𝑡,w) =

(
1 + 𝑜(1)

)
ℎ(𝑎, 𝑡,w),

uniformly over w ∈ H�𝑛, where

ℎ(𝑎, 𝑡,w) :=
𝐻0
𝐶1
𝑡−

1
2 (1 − 𝑡)2(w · �𝑛)𝑒−

|w· �𝑛|2
2(1−𝑡 ) exp

(
− |w · �𝑛⊥|2

2(1 − 𝑡) +
𝑎w · �𝑛⊥

1 − 𝑡 − 𝑡𝑎2

2(1 − 𝑡)

)
.

Recall 𝐷 [0, 𝑡] the space of cadlag functions from [0, 𝑡] toR. For any bounded and continuous functional
𝑔𝑡 : 𝐷 [0, 𝑡] → R, Equation (6.20) gives us

E𝑢𝑘 �𝑛
[
𝑔𝑡 (𝑋𝑘,. · �𝑛)

�� 𝑆(𝑘) = 𝑎𝑘 �𝑛⊥ +𝑏𝑘 �𝑛, 𝐻𝑆
H−�𝑛

> 𝑘
]
=

(
1+𝑜(1)

)
E𝑢𝑘 �𝑛

[
𝑔𝑡 (𝑋𝑘,. · �𝑛)ℎ

(
𝑎, 𝑡, 𝑋𝑘,𝑡

) �� 𝐻𝑆
H−�𝑛

> 𝑘𝑡
]
,

(6.21)

where we have used that for fixed a and t, ℎ(𝑎, 𝑡,w) is uniformly bounded in w. Applying the convergence
result [23, Theorem 2] (see also Remark 1 in [23]), we find

lim
𝑘→∞
E𝑢𝑘 �𝑛

[
𝑔𝑡 (𝑋𝑘,. · �𝑛)

�� 𝑆(𝑘) = 𝑎𝑘 �𝑛⊥ + 𝑏𝑘 �𝑛, 𝐻𝑆
H−�𝑛

> 𝑘
]
= E

[
𝑔𝑡

(
𝑡

1
2 𝔐H �𝑛 · �𝑛

)
ℎ
(
𝑎, 𝑡, 𝑡1/2𝔐H �𝑛 (1)

) ]
,

(6.22)

where (𝔐H �𝑛 (𝑠))𝑠∈[0,1] denotes the Brownian meander in H�𝑛 started from the origin. Recall that
𝔐H �𝑛 (𝑠) = 𝑊𝑠 �𝑛⊥ +𝑀𝑠 �𝑛, where (𝑊𝑠)𝑠∈[0,1] is a standard one-dimensional Brownian motion, (𝑀𝑠)𝑠∈[0,1]
is a standard one-dimensional Brownian meander, and𝑊. and 𝑀. are independent processes. Then the
expectation over𝑊. factors out of the right-hand side of Equation (6.22) as follows:

E

[𝐻0
𝐶1
(1 − 𝑡)−

3
2 𝑀1𝑒

− 𝑡 |𝑀1 |2
2(1−𝑡 ) 𝑔𝑡 (𝑡1/2𝑀.)

]
E

[
exp

(
− 𝑡N 2

2(1 − 𝑡) +
𝑎
√
𝑡

1 − 𝑡N − 𝑡𝑎2

2(1 − 𝑡)

)]
,

where N ∼ 𝑁 (0, 1). That second expectation evaluates to
√

1 − 𝑡 (in particular, there is no dependence
on a in the above expression). So, letting 𝐶2 := 𝐻0/𝐶1, we’ve found

lim
𝑘→∞
E𝑢𝑘 �𝑛

[
𝑔𝑡 (𝑋𝑘,. · �𝑛)

�� 𝑆(𝑘) = 𝑎𝑘 �𝑛⊥ + 𝑏𝑘 �𝑛, 𝐻𝑆
H−�𝑛

> 𝑘
]
= E

[
𝐶2 (1 − 𝑡)−

3
2 𝑀1𝑒

− 𝑡 |𝑀1 |2
2(1−𝑡 ) 𝑔𝑡 (𝑡

1
2 𝑀.)

]
.

Thus, for every fixed 𝑡 < 1, we have shown convergence in distribution on 𝐷 [0, 𝑡] to the same limit
for every a. This in particular implies convergence of all finite -dimensional distributions to the same
limit for every a, as well as tightness on [0, 1 − 𝛿], for any 𝛿 ∈ (0, 1). Tightness on [1 − 𝛿, 1] follows
by applying the exact same arguments for the random walk reversed in time, just as in the end of [23,
Section 4].

Thus, we have the convergence of the family of laws Q𝑘
𝑢𝑘 ,𝑎𝑘 ,𝑏𝑘

. The limit may be identified as that
of the standard Brownian excursion by taking 𝑆(𝑖) := 𝑆1 (𝑖) �𝑛⊥ + 𝑆2 (𝑖) �𝑛, where 𝑆1 (·) and 𝑆2(·) are
independent simple symmetric random walks on Z. �

Proof of Proposition 6.3. Following the proof of [31, Thm 5.1] until their Equation (59) yields
Equation (6.6). Equation (6.5) is then an immediate consequence of Proposition 6.1. �
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7. Proof of Theorem 1.3

This section is dedicated to the proof of Theorem 1.3. We prove a slightly more detailed result below.
Recall the generator L of the relevant Ferrari–Spohn diffusion defined in Equation (1.5).

Theorem 7.1. Fix an integer 𝑛 ≥ 0. Suppose that 𝑎𝐿 , the fractional part of 1
4𝛽 log 𝐿, converges to

some limit a, and let 𝜆 > 0 denote the 𝐿 → ∞ limit of 𝜆 (𝑛) (𝐿) := 𝑐∞𝑒
4𝛽𝑎𝐿 (1 − 𝑒−4𝛽)𝑒4𝛽𝑛. Define

y := (𝐾𝐿2/3�, 0), for some 𝐾 > 0, and the box 𝑄 := �−𝐾𝐿2/3, 𝐾𝐿2/3�2. Consider the modified Ising
polymer 𝛾 in 𝐷 = 𝑄 or H with start point −y and end point y with area tilt exp(−𝜆(𝑛) (𝐿)𝐴(𝛾)

𝐿 ). Let
𝛾(𝑥) denote the maximum vertical distance of 𝛾 at 𝑥 ∈ R. Let 𝜎 > 0 be the constant from Theorem 1.2,
Part (b). For any fixed 𝑇 > 0, the diffusively rescaled interface 𝜎− 1

2 𝐿−
1
3 𝛾(𝐿 2

3 𝑥) converges weakly in
(𝐷 [−𝑇, 𝑇], ‖ · ‖∞) as first 𝐿 → ∞ then 𝐾 → ∞ to the stationary Ferrari–Spohn diffusion on (0,∞)
with generator L and Dirichlet boundary condition at 0. The same holds for 𝛾(𝑥), the minimum vertical
distance at x.

Remark 7.2. Fix 𝛽 sufficiently large, and consider the SOS model with a floor on the box Q with
boundary conditions 𝐻 − 𝑛 everywhere, except on the bottom where they are 𝐻 − 𝑛 − 1. Equation (A.8)
and Observation 2.7 imply that the law of the 𝐻 − 𝑛-level line (connecting the bottom corners of Q)
is given by a modified Ising polymer with area tilt as in Theorem 7.1. Thus, Theorem 7.1 implies
Theorem 1.3.

Remark 7.3. The argument used to prove the above theorem holds mutatis mutandis for 𝐾 ∈ (0, 𝐿 𝜖 )
for, say, 0 < 𝜖 < 1

20 , where the restriction on 𝜖 is due to the fact that we are able to control the effect of
the area tilt term exp[− 𝜆

𝐿 𝐴(𝛾)] on boxes of side-length 𝐿2/3+𝜖 (via [14, Prop. A.1]).

7.1. Proof of Theorem 7.1

Let Pu,v
𝐷 be the modified Ising polymer in 𝐷 = 𝑄 or H with start point u ∈ Z2 and end point v ∈ Z2,

that is,

Pu,v
𝐷 (·) :=

G𝐷 (u → v
�� 𝛾 ∈ ·)

G𝐷 (u → v) ,

where we recall the partition functions G𝐷 (u → v) from Equation (5.17).17 Let Eu,v
𝐷 denote expectation

with respect to Pu,v
𝐷 . Next, define the modified Ising polymer with area tilt

P̃−y,y
𝐷,𝜆 (·) :=

E−y,y
𝐷

[
1{𝛾∈·}𝑒

− 𝜆
𝐿 𝐴(𝛾) ]

E−y,y
𝐷 [𝑒− 𝜆

𝐿 𝐴(𝛾) ]
. (7.1)

As explained above Equation (2.15), we will also view P−y,y
𝐷,𝜆 as a measure on animals Γ (in which

𝐴(Γ) := 𝐴(𝛾)). Note that we have replaced 𝜆 (𝑛) (𝐿) with its 𝐿 → ∞ limit 𝜆, and as the next claim
(controlling the influence of the area tilt) will show, the difference between these will play no role in
our estimates.

Claim 7.4. For each fixed 𝐾 > 0, with y = (𝐾𝐿2/3�, 0) as in Theorem 7.1, there exists 𝑎𝐾 > 0 such
that E−y,y

𝐷

[
𝑒−

𝜆
𝐿 𝐴(𝛾) ] → 𝑎𝐾 as 𝐿 →∞.

Proof. From Theorem 1.2, we know that both 𝐿−1/3𝛾(𝐿2/3𝑥�) and 𝐿−1/3𝛾(𝐿2/3𝑥�) converge weakly
in 𝐷 ([−𝐾, 𝐾], ‖ · ‖∞) to the Brownian excursion from 0 to 0. Since the function

17In Definition 2.6, we defined modified Ising polymers with start point zero for ease of notation and because, until now,
essentially all of our Ising polymers started from 0 ∈ Z2.
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𝑓 : (𝐷 [−𝐾, 𝐾], ‖ · ‖∞) → R

𝑔 ↦→ exp
(
−

∫ 𝐾

−𝐾
|𝑔(𝑥) |d𝑥

)

is a bounded, continuous function, it follows after a change of variables 𝑥 ↦→ 𝐿2/3𝑥 that

E−y,y
𝐷 [𝑒−

𝜆
𝐿 𝐴(𝛾) ] → E[𝑒−𝜆

∫ 𝐾

−𝐾 𝜉 (𝑥)d𝑥],

where 𝜉 denotes a Brownian excursion from 0 to 0 on [−𝐾, 𝐾]. This concludes the proof. �

The above claim (applied to the denominator of Equation (7.1) to show the effect of the area tilt there
is uniformly bounded, whereas its effect on the numerator can be isolated via Cauchy–Schwarz) now
implies that the total-variation distance between P̃−y,y

𝐷,𝜆 and P̃−y,y
𝐷,𝜆(𝑛)

vanishes as 𝐿 →∞.
We prove Theorem 7.1 by first coupling the cone points of Γ ∼ P−y,y

𝐷,𝜆 that lie inside some strip (those
cone points for which we will have entropic repulsion) with the trajectory of a random walk with area
tilt. We then fit this random walk into the framework of [30, Section 6], where a Ferrari–Spohn limit
was proved for a broad class of directed, 2D random walks with area tilt.

7.1.1. Coupling with an area-tilted random walk
This subsection will closely follow the notation and work in Section 5.6, where the existence of a
coupling between the cone points of a modified Ising polymer (without area tilt) and the corresponding
random walk was proved. The inputs to construct such a coupling were:

(a) existence of many cone points and boundedness of the polymer length (Lemma 5.7);
(b) boundedness of the irreducible pieces (Proposition 5.8); and
(c) entropic repulsion (Proposition 5.11).

These results all held with probability tending to 1 as N (the side length of the box) tends to infinity. In the
current situation, we take 𝑁 = 2‖y‖1 = 2𝐾𝐿2/3� and we shift x (as in the statement of the above results)
to y so that these results hold under P−y,y

𝐷 with probability tending to 1 as L tends to ∞. Claim 7.4 states
that P−y,y

𝐷 [𝑒− 𝜆
𝐿 𝐴(𝛾) ] is bounded away from 0 uniformly in L so that Items (a) and (c) above hold with

probability tending to 1 as L tends to ∞ under P−y,y
𝐷,𝜆 as well. Thus, we are in good position to establish

a coupling between the area-tilted Ising polymer and an area-tilted random walk that we define below.
Fix 𝛿 ∈ (0, 1/8). Analogous to Equation (5.35), define the measure

P𝜁
(L∗)

,𝜁
(R∗)

𝐷,𝜆,∗
(
·
)

:= P−y,y
𝐷,𝜆

(
·

�� P∗
𝐷,𝛿 (−y, y), Γ (L∗) = Γ

(L∗)
, Γ (R∗) = Γ

(R∗) )
,

where 𝜁 (L∗) and 𝜁 (R∗) are points in Z2 satisfying

𝜁
(L∗) ∈ [− 𝑁

2 + 𝑁4𝛿 ,− 𝑁
2 + 𝑁4𝛿 + (log 𝑁)2] × (𝑁 𝛿 , 𝑁4𝛿 (log 𝑁)2], (7.2)

𝜁
(R∗) ∈ [ 𝑁2 − 𝑁4𝛿 − (log 𝑁)2,− 𝑁

2 − 𝑁4𝛿] × (𝑁 𝛿 , 𝑁4𝛿 (log 𝑁)2] (7.3)

(these are the analogues of Equations (5.33) and (5.34), respectively). Recall that, thanks to Item (b)
and Item (c), the first and last cone points of Γ in the strip S− 𝑁

2 +𝑁 4𝛿 , 𝑁2 −𝑁 4𝛿 satisfy Equations (7.2) and
(7.3) with P−y,y

𝐷,𝜆-probability tending to 1 as L tends to ∞. It is between these cone points that we couple
with an area-tilted random walk.
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Recall the random walk S and its law P defined in Section 4.1. Write E and Eu for expec-
tation under P and Pu, respectively. Define the area under S as follows: For an l-steps walk
S = {(S1(0),S2(0)), . . . , (S1 (𝑙),S2(𝑙))}, we write

𝐴(S) :=
𝑙∑

𝑖=1
(S1(𝑖) − S1(𝑖 − 1))S2(𝑖). (7.4)

To indicate the law of the random walk S with area tilt, started from S(0) = u, we write

Pu
𝜆 (·) :=

Eu
[
1{S∈·}𝑒

− 𝜆
𝐿 𝐴(S) ]

Eu
[
𝑒−

𝜆
𝐿 𝐴(S) ] . (7.5)

Proposition 7.5. There exists 𝜈 > 0 such that for all 𝐾 > 0 and L large enough with respect to K, for all
𝛽 > 0 sufficiently large, and for all 𝜁 (L∗) and 𝜁 (R∗) satisfying Equations (5.33) and (5.34) respectively,
if we let 𝑇 = 𝐻

𝜁
(R∗) and view Cpts(Γ∗) as an ordered tuple (see Equation (2.20)), then

���P𝜁
(L∗)

,𝜁
(R∗)

𝐷,𝜆,∗

(
Cpts(Γ∗) ∈ ·

)
− P𝜁

(L∗)

𝜆

( (
S(𝑖)

)𝑇
𝑖=0 ∈ ·

�� 𝑇 < 𝐻H𝑁 𝛿

)���
tv
≤ 𝐶𝑒−𝜈𝛽 (log 𝑁 )2

for some constant 𝐶 := 𝐶 (𝛽) > 0.

Proof. This follows from the coupling of the untilted measures given by Proposition 5.13. One just
needs to check that the difference in the definitions of area for Γ∗ and S results in a negligible difference
in the tilts. This is easy to see: By Item (b), the distance between two consecutive cone points is at most
(log 𝐿)2, and hence one can enclose the diamond between them in a square of area (log 𝐿)4. Since the
total area of such squares is an upper bound on |𝐴(Γ∗) − 𝐴(𝑆) |, we find���� 𝐴(Γ∗)𝐿

− 𝐴(S)
𝐿

���� ≤ 2𝐾
(log 𝐿)4

𝐿1/3 = 𝑜(1).

This shows that the tilts are equivalent up to a 𝑜(1) factor. Since Claim 7.4 implies that the expectations
of 𝑒− 𝜆

𝐿 𝐴(Γ∗) and 𝑒− 𝜆
𝐿 𝐴(S) are bounded away from 0, the result follows. �

7.1.2. Convergence to Ferrari–Spohn
We have reduced to a 2D random walk bridge with area tilt conditioned to stay in H𝑁 𝛿 , with start point
ū := 𝜁 (L∗) and end point v̄ := 𝜁 (R∗) satisfying Equations (7.2) and (7.3), respectively. In [30, Sections
6.6 and 6.7], the Ferrari–Spohn diffusion limit is proved for a wide class of such random walks, with
the stronger condition ([30, Eq. (6.10)]) on the start point u and end point v of the random walk:

u ∈ [−�̄�𝐿2/3 − 𝐿1/3+𝜖 , �̄�𝐿2/3 + 𝐿1/3+𝜖 ] × [𝑐𝐿1/3, 𝐶𝐿1/3] (7.6)

v ∈ [�̄�𝐿2/3 − 𝐿1/3+𝜖 , �̄�𝐿2/3 + 𝐿1/3+𝜖 ] × [𝑐𝐿1/3, 𝐶𝐿1/3], (7.7)

where 𝜖 > 0 is any small constant, 𝐶 > 𝑐 > 0 are fixed constants and �̄� ≤ 𝐾 is a parameter tending
to ∞ after L (these conditions are stronger than Equations (7.2) and (7.3) in the y-coordinates only).
Lemma 7.6 shows that our random walk indeed passes through points satisfying Equations (7.6) and
(7.7) with high probability, thereby putting us in the same setting as [30, Section 6.6]. We prove it using
the Brownian excursion limit Theorem 4.3.

For brevity, we will write the law of the area-tilted random walk bridge as

P
ū,v̄
𝜆,+ := Pū

𝜆 (·
�� 𝐻v̄ < 𝐻H𝑁 𝛿 ).
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Similarly, we write the law of the untilted random walk bridge via

P
ū,v̄
+ := Pū (·

�� 𝐻v̄ < 𝐻H𝑁 𝛿 ).

We will denote expectation under these measures by replacing P with E.

Lemma 7.6. Let 𝐸𝑐,𝐶 denote the event that the random walk S passes through u and v satisfying
Equations (7.6) and (7.7), for some 𝐶 > 𝑐 > 0. Then for some constant 𝐾0 > 0, the following limit
holds uniformly in ū satisfying Equation (7.2) and v̄ satisfying Equation (7.3):

lim
𝑐→0

inf
𝐾 ≥𝐾0

lim inf
𝐿→∞

P
ū,v̄
𝜆,+(𝐸𝑐,𝐶 ) = 1.

Proof. We will show that S passes through a point u satisfying Equation (7.2) with high probability;
the same argument will show the same is true for v. Further, one only needs to check that u2 ≥ 𝑐𝐿1/3

(the upper bound by 𝐶𝐿1/3 is not needed), since S2(0) = ū2 < 𝑐𝐿1/3, and so the first time S2 rises
above 𝑐𝐿1/3, it will also be below 𝐶𝐿1/3 for L large enough (recall from Equation (5.38) that under the
nonarea-tilted measure, S has increments bounded by (log 𝐿)2 with probability tending to 1 as 𝐿 →∞,
and so by Claim 7.4, the same is true under the area-tilted measure).

Now, using the localization of S1 (Claim 6.4) and the triviality-in-L of the area tilt (Claim 7.4), we
have that for all 𝜖 > 0 small, the following hold with Pū,v̄

𝜆,+-probability tending to 1 as 𝐿 →∞:

E1(𝐿2/3) :=
{
S1(𝐿2/3) ∈ [−(𝐾 − 𝜇)𝐿2/3 − 𝐿1/3+𝜖 ,−(𝐾 − 𝜇)𝐿2/3 + 𝐿1/3+𝜖 ]

}
, and

E1 (2𝐿2/3) :=
{
S1(2𝐿2/3) ∈ [−(𝐾 − 2𝜇)𝐿2/3 − 𝐿1/3+𝜖 ,−(𝐾 − 2𝜇)𝐿2/3 + 𝐿1/3+𝜖 ]

}
. (7.8)

Thus, the lemma will be proved upon showing

lim
𝑐→0

sup
𝐾 ≥𝐾0

lim sup
𝐿→∞

P
ū,v̄
𝜆,+(S2(𝐿2/3) < 𝑐𝐿1/3 �� S2(2𝐿2/3) < 𝑐𝐿1/3 , E1 (2𝐿2/3)) = 0. (7.9)

Write the above probability as

E
ū,v̄
+

[
E

ū,S(2𝐿2/3)
+

[
1{S2 (𝐿2/3)<𝑐𝐿1/3 }𝑒

− 𝜆
𝐿 𝐴(S)

]
𝐹 (S(𝑖), 𝑖 ≥ 2𝐿2/3)

]
E

ū,v̄
+

[
E

ū,S(2𝐿2/3)
+

[
𝑒−

𝜆
𝐿 𝐴(S)

]
𝐹 (S(𝑖), 𝑖 ≥ 2𝐿2/3)

] , (7.10)

where

𝐹 (S(𝑖), 𝑖 ≥ 2𝐿2/3) := 𝑒−
𝜆
𝐿 𝐴(S(𝑖) ,𝑖≥2𝐿2/3)1{S2 (2𝐿2/3)<𝑐𝐿1/3 , E1 (2𝐿2/3) } .

Due to the restriction on S(2𝐿2/3) imposed by the indicator defining F, Equation (7.9) will be shown if
we can prove

lim
𝑐→0

sup
𝐾 ≥𝐾0

lim sup
𝐿→∞

E
ū,w̄
+

[
1{S2 (𝐿2/3)<𝑐𝐿1/3 }𝑒

− 𝜆
𝐿 𝐴(S)

]
E

ū,w̄
+

[
𝑒−

𝜆
𝐿 𝐴(S)

] = 0, (7.11)

uniformly over

w̄ ∈ [−(𝐾 − 2𝜇)𝐿2/3 − 𝐿1/3+𝜖 ,−(𝐾 − 2𝜇)𝐿2/3 + 𝐿1/3+𝜖 ] × [0, 𝑐𝐿1/3).

Note that the sup over K is trivial: Indeed, K plays no role in the limit in Equation (7.11), since by
horizontal shift invariance, we may shift to the right by 𝐾𝐿2/3. The denominator may be bounded from
below as a constant, by shifting both ū2 and w̄2 up to 𝑐𝐿1/3, and then applying the Brownian excursion



52 P. Caddeo et al.

limit as in the proof of Claim 7.4. The area tilt in the numerator may be bounded from above by 1. Thus,
we have reduced to showing the following:

lim
𝑐→0

lim sup
𝐿→∞

P
ū,w̄
+ (S2(𝐿2/3) < 𝑐𝐿1/3) = 0,

uniformly over �̄� and �̄�. By monotonicity, we may assume �̄�2 = 0. The result now follows from the
Brownian excursion limit of S2 under Pū,w̄

+ (Theorem 4.3). �

Following [30], we are now ready to prove Theorem 7.1.

Proof of Theorem 7.1. We have reduced to an area-tilted, directed 2D random walk bridge between u
and v satisfying Equations (7.2) and (7.3), respectively, conditioned to stay positive. That is, we have a
random walk S under law

S ∼ Pu,v
𝜆,+.

This puts us in the framework of the proof of the Ferrari–Spohn limit for such random walks given
in [30, Section 6.6 and 6.7]. Tightness follows exactly as in [30, Section 6.6]. The proof of finite-
dimensional distributions in [30, Section 6.7] had just two additional inputs: their Proposition 6.2 and
Lemma 6.3, and so we will be done as soon as we establish our analogues of these results.

Their Proposition 6.2 holds exactly the same for us. Their Lemma 6.3 does as well, with the exception
that the constant in front of our area tilt is slightly different, and thus the resulting generator is slightly
different as well. We restate and prove that result in our setting.

For any 𝑛 ∈ N, we will write S[0, 𝑛] := (S(𝑖))𝑖∈[0,𝑛] . Following [30, Eq.(6.6)], for any function
𝑓 : N→ R and 𝑢 ∈ H, define the n-step partition function

G𝑛
𝜆,𝐿,+ [ 𝑓 ] (u) := Eu

[
𝑒−

𝜆
𝑁 𝐴(S[0,𝑛]) 𝑓 (S2(𝑛))1{S[0,𝑛] ⊂H}

]
.

Recall from Section 4.1 that S under law P has step-distribution 𝑋 = (𝑋1, 𝑋2). Recall also
𝜎2 := Var(𝑋2)/𝜇 from the discussion above Theorem 4.3. Following [30, Section 6.5], define the
following operator on smooth test functions f with compact support in (0,∞):

T𝐿 𝑓 (𝑟) := E
[
𝑒−

𝜆
𝐿 𝑋1𝑟𝐿

1/3𝜎 𝑓
(
𝑟 + 𝑋2

𝐿1/3𝜎

)
1{𝑟+ 𝑋2

𝐿1/3𝜎
≥0}

]
.

Note that the indicator may be dropped, as f is supported above 0. By Taylor expanding f to second
order and 𝑒𝑥 − 1 to first order (the errors are 𝑜(𝐿−2/3)), we have

lim
𝐿→∞

T𝐿 − Id
𝐿−2/3 𝑓 (𝑟)

= lim
𝐿→∞

𝐿2/3E
[ (
𝑒−

𝜆
𝐿 𝑋1𝑟𝐿

1/3𝜎 − 1
)
𝑓 (𝑟) + 𝑒−

𝜆
𝐿 𝑋1𝑟𝐿

1/3𝜎
(
𝑓 ′(𝑟) 𝑋2

𝐿1/3𝜎
+ 1

2 𝑓
′′(𝑟)

𝑋2
2

𝐿2/3𝜎2

)]

= lim
𝐿→∞

𝐿2/3E
[
− 𝜆

𝐿2/3 𝑋1𝑟𝜎 𝑓 (𝑟) + 𝑒−
𝜆
𝐿 𝑋1𝑟𝐿

1/3𝜎
(
𝑓 ′(𝑟) 𝑋2

𝐿1/3𝜎
+ 1

2 𝑓
′′(𝑟)

𝑋2
2

𝐿2/3𝜎2

)]
.

Now, use 𝜇 := E[𝑋1], E[𝑋2] = 0 and Var(𝑋2) = E[𝑋2
2 ] so that the 𝑓 ′(𝑟) term vanishes and we find

lim
𝐿→∞

T𝐿 − Id
𝜇𝐿−2/3 𝑓 (𝑟) =

1
2 𝑓

′′(𝑟) − 𝜆𝜎𝑟 𝑓 (𝑟) =: L 𝑓 (𝑟).
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Kurtz’s semigroup convergence theorem ([24, Theorem 1.6.5], see also [33, Eq.(2.34)]) then gives

lim
𝐿→∞

T 𝑡𝐿2/3/𝜇�
𝐿 𝑓 = 𝑒𝑡L 𝑓 ,

uniformly over t in bounded intervals of R+. Define the rescaling operator

Sc𝐿 𝑓 (𝑥) = 𝑓 (𝑥𝐿−1/3𝜎−1).

Observing that G𝑘
𝜆,𝐿,+[Sc𝐿 𝑓 ] = T𝑘

𝐿 𝑓 , the second-to-last-display immediately yields

lim
𝐿→∞

G 𝑡𝐿2/3/𝜇�
𝜆,𝐿,+ [Sc𝐿 𝑓 ] = 𝑒𝑡L 𝑓 ,

which is our version of [30, Lemma 6.3]. �

A. Cluster expansion and open contours in the SOS model

A.1. Cluster expansion

Consider the SOS model in a region Λ � Z2 without floor, with boundary condition 𝑗 ∈ Z. Fix any
subset U of the inner boundary of Λ, and condition on {𝜑|𝑈 ≥ 𝑗}. Let 𝑍Λ,𝑈 := 𝑍 𝑗 ,+

Λ,𝑈 denote the partition
function of this model. Note that the partition function has no dependence on j and is also unchanged
by a replacement of the conditioning with {𝜑|𝑈 ≤ 𝑗}. [13] proves that there exists a constant 𝛽0 > 0
such that for all 𝛽 > 𝛽0, one has

log 𝑍Λ,𝑈 =
∑
𝑉 ⊂Λ

𝑓𝑈 (𝑉) (A.1)

for some function 𝑓𝑈 . Equation (A.1) was proven using the main theorem from [36], which can actually
be used to show (with the same proof as in [13]) that the formula holds simultaneously for all subsets
Λ′ ⊂ Λ (with the same 𝑓𝑈 ):

log 𝑍Λ′,𝑈 =
∑
𝑉 ⊂Λ′

𝑓𝑈 (𝑉) (A.2)

(here, 𝑍Λ′,𝑈 is defined as before, with the understanding that the condition on U only needs to be
satisfied on Λ′ ∩𝑈, or in other words 𝑍Λ′,𝑈 := 𝑍Λ′,𝑈∩Λ′). The latter observation leads, using Möbius
inversion, to the following formula for 𝑓𝑈 :

𝑓𝑈 (𝑉) =
∑
𝑊 ⊂𝑉

(−1) |𝑉 |− |𝑊 | log 𝑍𝑊 ,𝑈 . (A.3)

From Equation (A.3), we can read off some properties of the function 𝑓𝑈 :
1. 𝑓𝑈 (𝑉) only depends on U only through 𝑈 ∩ 𝑉 , and in particular, if 𝑈 ∩ 𝑉 = ∅, 𝑓𝑈 (𝑉) = 𝑓0 (𝑉) for

some universal function 𝑓0. Moreover, 𝑓0(𝑉) only depends on the ‘shape’ and size of the volume V,
that is, 𝑓0(·) is invariant with respect to lattice symmetries.

2. If V is not connected, 𝑓𝑈 (𝑉) = 0. Indeed, if 𝑉 = 𝑉1  𝑉2, each log-partition function on the right-
hand side of Equation (A.3) splits into the sum of two terms, both of which appear in the global sum
with the same frequency of plus and minus signs.

3. There exists a constant 𝛽0 > 0 such that

sup
𝑈
| 𝑓𝑈 (C) | ≤ exp

(
(𝛽 − 𝛽0)𝑑 (C)

)
, (A.4)

where 𝑑 (C) denotes the cardinality of the smallest connected set of bonds of Z2 containing all
boundary bonds of C (i.e., bonds connecting C to C𝑐), see [20, Proposition 3.9] for details.
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A.2. Proof of Proposition 2.1

Recall 𝑍 𝑗 ,+
Λ,𝑈 from above Equation (A.1), and define 𝑍 𝑗 ,−

Λ,𝑈 similarly but with the conditioning {𝜑|𝑈 ≤ 𝑗}
(as noted above Equation (A.1), 𝑍 𝑗 ,+

Λ,𝑈 = 𝑍
𝑗 ,−
Λ,𝑈 . The different notation is mostly for clarity in the

calculations that follow). Recall also Λ+𝛾 ,Λ
−
𝛾 ,Δ

+
𝛾 , and Δ−

𝛾 from above Proposition 2.1.
Observe that

𝑍
𝜉
Λ =

∑
𝛾

𝑒−𝛽 |𝛾 |𝑍1,+
Λ+𝛾 ,Δ+𝛾

𝑍0,−
Λ−𝛾 ,Δ−𝛾

. (A.5)

This is a simple consequence of the following identity: For any u, v ∈ Z2 such that 𝜑u ≥ 1 and 𝜑v ≤ 0,
we have

|𝜑u − 𝜑v | =
��(𝜑u − 1) −

(
𝜑v − 0

)
+ (1 − 0)

�� = (𝜑u − 1) + (0 − 𝜑v) + 1.

Now, cluster-expanding each of the partition functions on the right-hand side of Equation (A.5) yields

𝑍1
Λ+𝛾 ,Δ+𝛾

𝑍0
Λ−𝛾 ,Δ−𝛾

= exp
( ∑

C⊂Λ
C∩Δ𝛾=∅

𝑓0(C) +
∑
C⊂Λ+𝛾

C∩Δ𝛾≠∅

𝑓Δ+𝛾 (C) +
∑
C⊂Λ−𝛾

C∩Δ𝛾≠∅

𝑓Δ−𝛾 (C)
)

= 𝑒
∑

C⊂Λ 𝑓0 (C) exp
(
ΨΛ(𝛾)

)
= 𝑍0

Λ exp
(
ΨΛ(𝛾)

)
, (A.6)

where

ΨΛ(𝛾) := −
∑
C⊂Λ

C∩Δ𝛾≠∅

𝑓0(C) +
∑
C⊂Λ+𝛾

C∩Δ𝛾≠∅

𝑓Δ+𝛾 (C) +
∑
C⊂Λ−𝛾

C∩Δ𝛾≠∅

𝑓Δ−𝛾 (C).

Defining

𝜙(C; 𝛾) := − 𝑓0(C) + 𝑓Δ+𝛾 (C)1{C∩Δ−𝛾=∅} + 𝑓Δ−𝛾 (C)1{C∩Δ+𝛾=∅}, (A.7)

it follows from Equations (A.5) and (A.6) that

𝑍
𝜉
Λ = 𝑍0

Λ

∑
𝛾

exp
(
− 𝛽 |𝛾 | +

∑
C⊂Λ

C∩Δ𝛾≠∅

𝜙(C; 𝛾)
)
.

Equations (2.1) and (2.3) follow immediately. From the definition of 𝜙 in Equation (A.7) and the
properties of 𝑓𝑈 from Appendix A.1, we obtain Properties (i) to (iv) of the proposition.

A.3. Law of an open contour in the SOS model with floor

Consider the SOS model 𝜋 𝜉𝑅 in a domain R with floor at 0 and boundary condition 𝜉 ∈ {ℎ − 1, ℎ}𝜕Λ
inducing a unique open h-contour 𝛾. Consider ℎ =  1

4𝛽 log 𝐿� − 𝑛, for 𝑛 ∈ N fixed relative to L, and
assume that the domain R satisfies |𝑅 | ≤ 𝐿

4
3+2𝜖 and |𝜕𝑅 | ≤ 𝐿

2
3+2𝜖 , for some 𝜖 ∈ (0, 1/20). In this

subsection, we derive an asymptotic expression for the law of the random contour 𝛾 in terms of the
no-floor law �̂�

𝜉
𝑅 .

For a subset U of the inner boundary of R, recall 𝑍 𝑗 ,±
𝑅,𝑈 as in Appendix A.2, and define 𝑍 𝑗 ,±

𝑅,𝑈 similarly
but with a floor at 0. As in Equation (A.5), we can write the law of 𝛾 in terms of the partition functions
above and below it:

𝜋
𝜉
𝑅 (𝛾) = 𝑒

−𝛽 |𝛾 |𝑍ℎ,+
𝑅+𝛾 ,Δ+𝛾

𝑍ℎ−1,−
𝑅−𝛾 ,Δ−𝛾

.
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The partition functions 𝑍 𝑗 ,±
𝑅,𝑈 can be related to the corresponding partition function 𝑍 𝑗 ,±

𝑅,𝑈 of the model
without floor via the following (taken from [14, Prop. A.1]):

𝑍
𝑗 ,±
𝑅,𝑈 = 𝑍 𝑗 ,±

𝑅,𝑈 exp(−�̂�(𝜑𝑜 > 𝑗) |𝑅 | + 𝑜(1)),

where �̂� is the infinite volume measure obtained as the thermodynamic limit of �̂�0
Λ, see [3]. It follows that

𝜋
𝜉
𝑅 (𝛾) ∝ 𝑒

−𝛽 |𝛾 |𝑍ℎ,+
𝑅+𝛾 ,Δ+𝛾

𝑍ℎ−1,−
𝑅−𝛾 ,Δ−𝛾

exp
(
−

(
�̂�(𝜑𝑜 > ℎ − 1) − �̂�(𝜑𝑜 > ℎ)

)
|𝑅−𝛾 | + 𝑜(1)

)
,

where we used |𝑅+𝛾 | = |𝑅 | − |𝑅−𝛾 | and dropped the term |𝑅 |�̂�(𝜑𝑜 > ℎ), which is independent of 𝛾. It was
proved in [14, Lemma 2.4] that there exists a constant 𝑐∞ := 𝑐∞(𝛽) such that, for 𝑗 ≥ 1,

�̂�(𝜑𝑜 ≥ 𝑗) = 𝑐∞𝑒−4𝛽 𝑗 +𝑂 (𝑒−6𝛽 𝑗 ).

Define 𝑎𝐿 := 1
4𝛽 log 𝐿 −  1

4𝛽 log 𝐿�, 𝜆 := 𝜆(𝐿) = 𝑐∞𝑒4𝛽𝑎𝐿 (1 − 𝑒−4𝛽) and 𝜆 (𝑛) := 𝜆𝑒4𝛽𝑛. We have

�̂�(𝜑𝑜 > ℎ − 1) − �̂�(𝜑𝑜 > ℎ) = 𝑐∞𝑒−4𝛽ℎ (1 − 𝑒−4𝛽) +𝑂 (𝑒−6𝛽ℎ)
= 𝑐∞𝑒

4𝛽𝑎𝐿−log 𝐿+4𝛽𝑛 (1 − 𝑒−4𝛽) +𝑂 (𝑒−6𝛽ℎ) = 𝜆 (𝑛) /𝐿 +𝑂 (𝑒−6𝛽ℎ).

Putting everything together, we find

𝜋
𝜉
𝑅 (𝛾) ∝ �̂�

𝜉
𝑅 (𝛾) exp

(
− 𝜆

(𝑛)

𝐿
𝐴(𝛾) + 𝑜(1)

)
, (A.8)

where 𝐴(𝛾) = |𝑅−𝛾 | is the area under 𝛾 in R.

B. Proof of Proposition 2.14 and Equation (5.18)

Proof of Proposition 2.14. Fix 𝛿 ∈ (0, 1). We begin by showing that for any y ∈ Y�𝛿 \ {0}, we have
𝑓 (hy) = 1, where

𝑓 (h) :=
∑
Γ∈A

𝑊h(Γ).

Let

W�
in := {𝑠hy : y ∈ Y�𝛿 \ {0}, 𝑠 ∈ [0, 1]}

and

W�
out := {𝑠hy : y ∈ Y�𝛿 \ {0}, 𝑠 ∈ [1, 1 +

𝛽𝜈
2 ‖hy‖−1

2 ]},

where 𝜈 is the same as in Proposition 2.12. In words, W�
in is the sector of the Wulff shape W where

the sector boundary (part of 𝜕W) is {hy : y ∈ Y�𝛿 }, while W�
out lies right outside of W along the

continuation of such sector (note that W�
in ⊂ W comes from 0 ∈ W and the convexity of W).

In what follows, we let 𝐶 := 𝐶 (𝛽) > 0 denote a constant that may depend on 𝛽 and may change from
line-to-line. We begin with two claims.
Claim B.1. For all h ∈ W�

in ∪W�
out, we have∑

Γ∈AL∪AR

𝑊h (Γ) < ∞,

and the series converges uniformly over h. In particular, 𝑓 (h) is continuous on W�
in ∪W�

out.
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Proof of Claim B.1. We will use the following bound many times: From Equation (2.16), we have that
for any 𝜖 ∈ (0, 1) and for all 𝛽 > 0 sufficiently large, there exists a constant 𝐶 := 𝐶 (𝜖, 𝛽) > 0 such that
for all y ∈ Z2

G (y) ≤ 𝐶𝑒−𝜏𝛽 (y)+𝜖 ‖y‖1 . (B.1)

For h ∈ W�
in ∪ W�

out, we have h · y − 𝜏𝛽 (y) ≤ 𝛽𝜈
2 ‖y‖2 ≤ 𝛽𝜈

2 ‖y‖1 for all y ∈ Z2 \ {0}. Then
Proposition 2.12 and Equation (B.1) yield∑

Γ∈AL∪AR
Γ:0→y

𝑊h(Γ) ≤ 𝑒h·yG (y
�� |Cpts(Γ) | = 0) ≤ 𝐶 exp

(
− ( 𝜈𝛽2 − 𝜖)‖y‖1

)
. (B.2)

Take 𝜖 < 𝜈𝛽/2. Then since A ⊂ AL, the sequence of continuous functions

𝑓𝑁 (h) :=
∑

y∈Z2\{0}
‖y‖1≤𝑁

∑
Γ∈A

Γ:0→y

𝑊h (Γ)

converges uniformly to 𝑓 (h), and so the claim follows. �

Claim B.2. For h ∈ W�
in, 𝑓 (h) ≤ 1. For h ∈ W�

out, 𝑓 (h) ≥ 1.

Proof of Claim B.2. Similar to Equation (B.2), we have the following for any h ∈ W�
in ∪W�

out:∑
y∈Y�𝛿

∑
Γ=[𝛾,C ]
𝛾:0→y

𝑊h(Γ)1{ |Cpts(Γ) |<2} ≤ 𝐶 + 𝐶
∑

y∈Y�𝛿
‖y‖1>2𝛿−1

0

𝑒h·y−𝛽𝜈 ‖y‖G (y) < ∞. (B.3)

Using the factorization of 𝑞(Γ) (2.18) and (B.3), we have∑
y∈Y�𝛿

𝑒h·yG (y)

≤ 𝐶 +
∑

y∈Y�

∑
𝑚≥1

∑
Γ (𝐿) ∈AL

∑
Γ (1) ...,Γ (𝑚) ∈A

∑
Γ (𝑅) ∈AR

𝑊h(Γ (𝐿) )
( 𝑚∏
𝑖=1
𝑊h (Γ (𝑖) )

)
𝑊h(Γ (𝑅) )1X(Γ)=y

= 𝐶 +
( ∑
Γ (𝐿) ∈AL

𝑊h(Γ (𝐿) )
) ( ∑

Γ (𝑅) ∈AR

𝑊h (Γ (𝑅) )
) ∑
𝑚≥1

𝑓 (h)𝑚

=: 𝐶 + 𝐵𝐿 (h)𝐵𝑅 (h)
∑
𝑚≥1

𝑓 (h)𝑚,

where in the inequality we replaced Y�𝛿 by the full cone Y� and in the next line we exchanged the sums
and used the fact that an animal with at least one cone point must necessarily satisfy X(Γ) ∈ Y�. Hence,
we have the chain of inequalities∑

y∈Y�𝛿

𝑒h·yG (y) ≤ 𝐶 + 𝐵𝐿 (h)𝐵𝑅 (h)
∑
𝑚≥1

𝑓 (h)𝑚 ≤ 𝐶 +
∑
y∈Z2

𝑒h·yG (y). (B.4)

Since 𝐵𝐿 (h), 𝐵𝑅 (h) < ∞ by Claim B.1, finiteness of the middle term in Equation (B.4) depends only
on the convergence of

∑
𝑚≥1 𝑓 (h)𝑚.

Now, if h is in the interior of W�
in (and thus in the interior of W), the rightmost term in Equation

(B.4) converges due to the second definition of W , and thus
∑

𝑚≥1 𝑓 (h)𝑚 < ∞, and thus 𝑓 (h) < 1.
By continuity of f, we get 𝑓 (h) ≤ 1 on W�

in. On the other hand, if h is in the interior of W�
out, the
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leftmost term in Equation (B.4) diverges (by the same argument that showed the equivalence of the two
definitions of W in subsection 2.6), and thus

∑
𝑚≥1 𝑓 (h)𝑚 = ∞, and thus 𝑓 (h) ≥ 1. �

By continuity of f, it follows that 𝑓 (h) = 1 on W�
in ∩W�

out, that is, 𝑓 (hy) = 1 for y ∈ Y�𝛿 . This proves
that Phy defines a probability distribution on A for y ∈ Y�𝛿 .

Next, we show Equation (2.25). For any y ∈ Y�𝛿 \ {0}, define

𝐹 (y) := 𝑓 (hy) =
∑
Γ∈A
Phy (Γ).

From above, we know that 𝐹 (y) ≡ 1. Since 𝜏𝛽 is analytic outside of the origin (Proposition 2.4), it is
in particular twice differentiable and thus so is Phy (Γ) with ∇Phy (Γ) = 𝐽hy X(Γ)Phy , where 𝐽hy is the
Jacobian matrix of y ↦→ hy. Using the same argument as in Claim B.1 and boundedness of 𝐽hy , we find
that

∑
Γ∈A 𝐽hy X(Γ)Phx (Γ) converges uniformly for y ∈ Z2 \ {0}, and thus we can differentiate 𝐹 (y) under

the sum to get

0 = ∇𝐹 (y) =
∑
Γ∈A

𝐽hy X(Γ)Phy (Γ) = 𝐽hy

∑
Γ∈A

X(Γ)Phy (Γ) = 𝐽hyE
hy [X(Γ)],

that is, Ehy [X(Γ)] ∈ Ker(𝐽hy ). Differentiating the relation hy · y = 𝜏𝛽 (𝑦), we see that y ∈ Ker(𝐽hy ), and
so if 𝐽hy is nondegenerate we get that Ehy [X(Γ)] is collinear to y, that is, Ehy [X(Γ)] = 𝛼y for some
scalar 𝛼 = 𝛼(y). Finally, the nondegeneracy condition can be removed: Since 𝜏𝛽 is analytic (outside of
the origin), the points at which 𝐽hy is fully degenerate form a discrete set, and since collinearity must
hold outside of such set and Ehy [X(Γ)] is continuous, we get the result for any y ∈ Y�𝛿 \ {0}.

It remains to show the exponential tail decay (2.26), which actually holds for the weights𝑊h for any
h ∈ W . Below, 𝜈1 > 0 and 𝜈2 > 0 denote constants independent of h and 𝛽, while 𝐶1 > 0 and 𝐶2 > 0
may depend on 𝛽 but not h. We express the left-hand side of Equations (2.26) as follows:∑

Γ∈AL∪AR
|Γ | ≥𝑘

𝑊h(Γ) ≤
∑

‖y‖1≥𝑘/2

∑
Γ∈AL∪AR
|Γ | ≥𝑘
Γ:0→y

𝑊h(Γ) +
∑

‖y‖1<𝑘/2

∑
|Γ | ≥𝑘
Γ:0→y

𝑊h (Γ). (B.5)

The first term in the above sum can be bounded using Equation (B.1), Proposition 2.12, and the bound
h · y ≤ 𝜏𝛽 (y) for any h ∈ W:∑

‖y‖1≥𝑘/2

∑
Γ∈AL∪AR
|Γ | ≥𝑘
Γ:0→y

𝑊h (Γ) ≤
∑

‖y‖1≥𝑘/2
𝑒h·yG (y

�� |Cpts(Γ) | = 0) ≤
∑

‖y‖1≥𝑘/2
𝑒−(𝜈𝛽−𝜖 ) ‖y‖1 ≤ 𝐶1𝑒

−𝜈1𝛽𝑘 .

The second term in Equation (B.5) is bounded by∑
‖y‖1<𝑘/2

𝑒h·yG (y
�� |𝛾 | ≥ 𝑘) ≤ ∑

‖y‖1<𝑘/2
𝑒𝜏𝛽 (y)

(
𝑐𝑒−𝜈0𝛽 (𝑘/‖y‖1) ‖y‖1

)
G (y)

≤ 𝐶2𝑒
−𝜈0𝛽𝑘

∑
‖y‖1<𝑘/2

𝑒𝜖 ‖y‖1 ≤ 𝐶2𝑒
−𝜈2𝛽𝑘 ,

where the first inequality uses Equation (2.21) and h · y ≤ 𝜏𝛽 (y), and the second inequality uses
Equation (B.1). �

Proof of Equation (5.18). Define the partition function over contours 𝛾 ⊂ Z2 such that 𝛾 : 0 → y:

Gfull𝐷 (y) :=
∑
𝛾:0→y

𝑞𝐷 (𝛾).
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Equation (2.13) gives us 𝑞𝐷 (𝛾) ≤ exp(6𝑒−𝜒𝛽 |𝛾 |)𝑞(𝛾), from which we find

Gfull𝐷 (y) ≤
∑
𝛾:0→y

𝑒6𝑒−𝜒𝛽 |𝛾 |𝑞(𝛾) ≤ 𝑒6.6𝑒−𝜒𝛽 ‖y‖1G (y) +
∑
𝛾:0→y

|𝛾 | ≥1.1‖y‖1

𝑒6𝑒−𝜒𝛽 |𝛾 |𝑞(𝛾) ≤ 𝑒7𝑒−𝜒𝛽 ‖y‖1G (y),

where in the final inequality we used Equation (2.21). We then obtain the analogue of Equation (B.1)
by applying Equation (B.1) to the above: For any 𝜖 ∈ (0, 1), there exists 𝛽0 := 𝛽0(𝜖) > 0 such that for
all 𝛽 ≥ 𝛽0 and for all y ∈ Z2,

Gfull𝐷 (y) ≤ 𝐶𝑒−𝜏𝛽 (y)+𝜖 ‖y‖1 (B.6)

for some 𝐶 := 𝐶 (𝜖, 𝛽) > 0. Similarly, we obtain the length and contour cone points bound Lemma 2.11
and the animal cone points bound Proposition 2.12 with Gfull𝐷 (y) replacing G (y) there. With these
bounds, we may rerun the proof of Equation (2.26), replacing𝑊h(Γ) with 𝑒h·X(Γ)𝑞𝐷 (Γ). �
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